CLEFIA implementation in Python (improved version)

As commented in my last post, CLEFIA implementation in Python, the performance figures for key setup and block encryption of my first coding attempt were poor when compared to those of AES.

Nevertheless, in order to establish a fair comparison between the two implementations, I included in CLEFIA’s code the same optimization technique used in AES, memoization, for speeding up the multiplication in the binary finite field GF(2^8). For this purpose, the generic multiplication function used in the first version was replaced by five memoized functions, x2(), x4(), x6(), x8() and x10(), thanks to the fact that there are only five different constants (besides the multiplicative identity of the field, 1) in the matrices m0 and m1.

The payback of this small effort was remarkable: the new code is 7 times(!) faster than the old, as the time required for the 128-bit key setup plus block encryption (in ECB mode) went down from 3.8 ms to 0.5 ms. A similar reduction was observed for 192- and 256-bit keys: from 5.2ms to 0.7 ms and 5.7 ms to 0.77 ms. All numbers were observed in a Core i7-2600K @ 3.5 GHz desktop running 64-bit Windows 7. The Python interpreter used was ActivePython-3.2.2.3-win64-x64.

#!/usr/bin/python3
#
# Author: Joao H de A Franco (jhafranco@acm.org)
#
# Description: CLEFIA implementation in Python 3
#
# Date: 2012-02-03
#
# License: Attribution-NonCommercial-ShareAlike 3.0 Unported
#          (CC BY-NC-SA 3.0)
#===========================================================
import sys
from time import time

# Key sizes supported
ksTable = {"SIZE_128": 16,
           "SIZE_192": 24,
           "SIZE_256": 32}

# Number of rounds related to key size
nrTable = {"SIZE_128": 18,
           "SIZE_192": 22,
           "SIZE_256": 26}

# Number of round keys related to key size
nrkTable = {"SIZE_128": 36,
            "SIZE_192": 44,
            "SIZE_256": 52}

# Number of rounds
nr = None

# Number of round keys effectively used
nrk = None

# Number of whitening keys
nwk = 4

# Round keys vector
rk = [None] * 2 * nrTable[max(nrTable)]

# Whitening keys
wk = [None] * 4

# First S-Box
s0 = [0x57, 0x49, 0xd1, 0xc6, 0x2f, 0x33, 0x74, 0xfb,
      0x95, 0x6d, 0x82, 0xea, 0x0e, 0xb0, 0xa8, 0x1c,
      0x28, 0xd0, 0x4b, 0x92, 0x5c, 0xee, 0x85, 0xb1,
      0xc4, 0x0a, 0x76, 0x3d, 0x63, 0xf9, 0x17, 0xaf,
      0xbf, 0xa1, 0x19, 0x65, 0xf7, 0x7a, 0x32, 0x20,
      0x06, 0xce, 0xe4, 0x83, 0x9d, 0x5b, 0x4c, 0xd8,
      0x42, 0x5d, 0x2e, 0xe8, 0xd4, 0x9b, 0x0f, 0x13,
      0x3c, 0x89, 0x67, 0xc0, 0x71, 0xaa, 0xb6, 0xf5,
      0xa4, 0xbe, 0xfd, 0x8c, 0x12, 0x00, 0x97, 0xda,
      0x78, 0xe1, 0xcf, 0x6b, 0x39, 0x43, 0x55, 0x26,
      0x30, 0x98, 0xcc, 0xdd, 0xeb, 0x54, 0xb3, 0x8f,
      0x4e, 0x16, 0xfa, 0x22, 0xa5, 0x77, 0x09, 0x61,
      0xd6, 0x2a, 0x53, 0x37, 0x45, 0xc1, 0x6c, 0xae,
      0xef, 0x70, 0x08, 0x99, 0x8b, 0x1d, 0xf2, 0xb4,
      0xe9, 0xc7, 0x9f, 0x4a, 0x31, 0x25, 0xfe, 0x7c,
      0xd3, 0xa2, 0xbd, 0x56, 0x14, 0x88, 0x60, 0x0b,
      0xcd, 0xe2, 0x34, 0x50, 0x9e, 0xdc, 0x11, 0x05,
      0x2b, 0xb7, 0xa9, 0x48, 0xff, 0x66, 0x8a, 0x73,
      0x03, 0x75, 0x86, 0xf1, 0x6a, 0xa7, 0x40, 0xc2,
      0xb9, 0x2c, 0xdb, 0x1f, 0x58, 0x94, 0x3e, 0xed,
      0xfc, 0x1b, 0xa0, 0x04, 0xb8, 0x8d, 0xe6, 0x59,
      0x62, 0x93, 0x35, 0x7e, 0xca, 0x21, 0xdf, 0x47,
      0x15, 0xf3, 0xba, 0x7f, 0xa6, 0x69, 0xc8, 0x4d,
      0x87, 0x3b, 0x9c, 0x01, 0xe0, 0xde, 0x24, 0x52,
      0x7b, 0x0c, 0x68, 0x1e, 0x80, 0xb2, 0x5a, 0xe7,
      0xad, 0xd5, 0x23, 0xf4, 0x46, 0x3f, 0x91, 0xc9,
      0x6e, 0x84, 0x72, 0xbb, 0x0d, 0x18, 0xd9, 0x96,
      0xf0, 0x5f, 0x41, 0xac, 0x27, 0xc5, 0xe3, 0x3a,
      0x81, 0x6f, 0x07, 0xa3, 0x79, 0xf6, 0x2d, 0x38,
      0x1a, 0x44, 0x5e, 0xb5, 0xd2, 0xec, 0xcb, 0x90,
      0x9a, 0x36, 0xe5, 0x29, 0xc3, 0x4f, 0xab, 0x64,
      0x51, 0xf8, 0x10, 0xd7, 0xbc, 0x02, 0x7d, 0x8e]

# Second S-Box
s1 = [0x6c, 0xda, 0xc3, 0xe9, 0x4e, 0x9d, 0x0a, 0x3d,
      0xb8, 0x36, 0xb4, 0x38, 0x13, 0x34, 0x0c, 0xd9,
      0xbf, 0x74, 0x94, 0x8f, 0xb7, 0x9c, 0xe5, 0xdc,
      0x9e, 0x07, 0x49, 0x4f, 0x98, 0x2c, 0xb0, 0x93,
      0x12, 0xeb, 0xcd, 0xb3, 0x92, 0xe7, 0x41, 0x60,
      0xe3, 0x21, 0x27, 0x3b, 0xe6, 0x19, 0xd2, 0x0e,
      0x91, 0x11, 0xc7, 0x3f, 0x2a, 0x8e, 0xa1, 0xbc,
      0x2b, 0xc8, 0xc5, 0x0f, 0x5b, 0xf3, 0x87, 0x8b,
      0xfb, 0xf5, 0xde, 0x20, 0xc6, 0xa7, 0x84, 0xce,
      0xd8, 0x65, 0x51, 0xc9, 0xa4, 0xef, 0x43, 0x53,
      0x25, 0x5d, 0x9b, 0x31, 0xe8, 0x3e, 0x0d, 0xd7,
      0x80, 0xff, 0x69, 0x8a, 0xba, 0x0b, 0x73, 0x5c,
      0x6e, 0x54, 0x15, 0x62, 0xf6, 0x35, 0x30, 0x52,
      0xa3, 0x16, 0xd3, 0x28, 0x32, 0xfa, 0xaa, 0x5e,
      0xcf, 0xea, 0xed, 0x78, 0x33, 0x58, 0x09, 0x7b,
      0x63, 0xc0, 0xc1, 0x46, 0x1e, 0xdf, 0xa9, 0x99,
      0x55, 0x04, 0xc4, 0x86, 0x39, 0x77, 0x82, 0xec,
      0x40, 0x18, 0x90, 0x97, 0x59, 0xdd, 0x83, 0x1f,
      0x9a, 0x37, 0x06, 0x24, 0x64, 0x7c, 0xa5, 0x56,
      0x48, 0x08, 0x85, 0xd0, 0x61, 0x26, 0xca, 0x6f,
      0x7e, 0x6a, 0xb6, 0x71, 0xa0, 0x70, 0x05, 0xd1,
      0x45, 0x8c, 0x23, 0x1c, 0xf0, 0xee, 0x89, 0xad,
      0x7a, 0x4b, 0xc2, 0x2f, 0xdb, 0x5a, 0x4d, 0x76,
      0x67, 0x17, 0x2d, 0xf4, 0xcb, 0xb1, 0x4a, 0xa8,
      0xb5, 0x22, 0x47, 0x3a, 0xd5, 0x10, 0x4c, 0x72,
      0xcc, 0x00, 0xf9, 0xe0, 0xfd, 0xe2, 0xfe, 0xae,
      0xf8, 0x5f, 0xab, 0xf1, 0x1b, 0x42, 0x81, 0xd6,
      0xbe, 0x44, 0x29, 0xa6, 0x57, 0xb9, 0xaf, 0xf2,
      0xd4, 0x75, 0x66, 0xbb, 0x68, 0x9f, 0x50, 0x02,
      0x01, 0x3c, 0x7f, 0x8d, 0x1a, 0x88, 0xbd, 0xac,
      0xf7, 0xe4, 0x79, 0x96, 0xa2, 0xfc, 0x6d, 0xb2,
      0x6b, 0x03, 0xe1, 0x2e, 0x7d, 0x14, 0x95, 0x1d]

m0 = [0x01, 0x02, 0x04, 0x06, 0x02, 0x01, 0x06, 0x04,
      0x04, 0x06, 0x01, 0x02, 0x06, 0x04, 0x02, 0x01]

m1 = [0x01, 0x08, 0x02, 0x0a, 0x08, 0x01, 0x0a, 0x02,
      0x02, 0x0a, 0x01, 0x08, 0x0a, 0x02, 0x08, 0x01]

con128 = [0xf56b7aeb, 0x994a8a42, 0x96a4bd75, 0xfa854521,
          0x735b768a, 0x1f7abac4, 0xd5bc3b45, 0xb99d5d62,
          0x52d73592, 0x3ef636e5, 0xc57a1ac9, 0xa95b9b72,
          0x5ab42554, 0x369555ed, 0x1553ba9a, 0x7972b2a2,
          0xe6b85d4d, 0x8a995951, 0x4b550696, 0x2774b4fc,
          0xc9bb034b, 0xa59a5a7e, 0x88cc81a5, 0xe4ed2d3f,
          0x7c6f68e2, 0x104e8ecb, 0xd2263471, 0xbe07c765,
          0x511a3208, 0x3d3bfbe6, 0x1084b134, 0x7ca565a7,
          0x304bf0aa, 0x5c6aaa87, 0xf4347855, 0x9815d543,
          0x4213141a, 0x2e32f2f5, 0xcd180a0d, 0xa139f97a,
          0x5e852d36, 0x32a464e9, 0xc353169b, 0xaf72b274,
          0x8db88b4d, 0xe199593a, 0x7ed56d96, 0x12f434c9,
          0xd37b36cb, 0xbf5a9a64, 0x85ac9b65, 0xe98d4d32,
          0x7adf6582, 0x16fe3ecd, 0xd17e32c1, 0xbd5f9f66,
          0x50b63150, 0x3c9757e7, 0x1052b098, 0x7c73b3a7]

con192 = [0xc6d61d91, 0xaaf73771, 0x5b6226f8, 0x374383ec,
          0x15b8bb4c, 0x799959a2, 0x32d5f596, 0x5ef43485,
          0xf57b7acb, 0x995a9a42, 0x96acbd65, 0xfa8d4d21,
          0x735f7682, 0x1f7ebec4, 0xd5be3b41, 0xb99f5f62,
          0x52d63590, 0x3ef737e5, 0x1162b2f8, 0x7d4383a6,
          0x30b8f14c, 0x5c995987, 0x2055d096, 0x4c74b497,
          0xfc3b684b, 0x901ada4b, 0x920cb425, 0xfe2ded25,
          0x710f7222, 0x1d2eeec6, 0xd4963911, 0xb8b77763,
          0x524234b8, 0x3e63a3e5, 0x1128b26c, 0x7d09c9a6,
          0x309df106, 0x5cbc7c87, 0xf45f7883, 0x987ebe43,
          0x963ebc41, 0xfa1fdf21, 0x73167610, 0x1f37f7c4,
          0x01829338, 0x6da363b6, 0x38c8e1ac, 0x54e9298f,
          0x246dd8e6, 0x484c8c93, 0xfe276c73, 0x9206c649,
          0x9302b639, 0xff23e324, 0x7188732c, 0x1da969c6,
          0x00cd91a6, 0x6cec2cb7, 0xec7748d3, 0x8056965b,
          0x9a2aa469, 0xf60bcb2d, 0x751c7a04, 0x193dfdc2,
          0x02879532, 0x6ea666b5, 0xed524a99, 0x8173b35a,
          0x4ea00d7c, 0x228141f9, 0x1f59ae8e, 0x7378b8a8,
          0xe3bd5747, 0x8f9c5c54, 0x9dcfaba3, 0xf1ee2e2a,
          0xa2f6d5d1, 0xced71715, 0x697242d8, 0x055393de,
          0x0cb0895c, 0x609151bb, 0x3e51ec9e, 0x5270b089]

con256 = [0x0221947e, 0x6e00c0b5, 0xed014a3f, 0x8120e05a,
          0x9a91a51f, 0xf6b0702d, 0xa159d28f, 0xcd78b816,
          0xbcbde947, 0xd09c5c0b, 0xb24ff4a3, 0xde6eae05,
          0xb536fa51, 0xd917d702, 0x62925518, 0x0eb373d5,
          0x094082bc, 0x6561a1be, 0x3ca9e96e, 0x5088488b,
          0xf24574b7, 0x9e64a445, 0x9533ba5b, 0xf912d222,
          0xa688dd2d, 0xcaa96911, 0x6b4d46a6, 0x076cacdc,
          0xd9b72353, 0xb596566e, 0x80ca91a9, 0xeceb2b37,
          0x786c60e4, 0x144d8dcf, 0x043f9842, 0x681edeb3,
          0xee0e4c21, 0x822fef59, 0x4f0e0e20, 0x232feff8,
          0x1f8eaf20, 0x73af6fa8, 0x37ceffa0, 0x5bef2f80,
          0x23eed7e0, 0x4fcf0f94, 0x29fec3c0, 0x45df1f9e,
          0x2cf6c9d0, 0x40d7179b, 0x2e72ccd8, 0x42539399,
          0x2f30ce5c, 0x4311d198, 0x2f91cf1e, 0x43b07098,
          0xfbd9678f, 0x97f8384c, 0x91fdb3c7, 0xfddc1c26,
          0xa4efd9e3, 0xc8ce0e13, 0xbe66ecf1, 0xd2478709,
          0x673a5e48, 0x0b1bdbd0, 0x0b948714, 0x67b575bc,
          0x3dc3ebba, 0x51e2228a, 0xf2f075dd, 0x9ed11145,
          0x417112de, 0x2d5090f6, 0xcca9096f, 0xa088487b,
          0x8a4584b7, 0xe664a43d, 0xa933c25b, 0xc512d21e,
          0xb888e12d, 0xd4a9690f, 0x644d58a6, 0x086cacd3,
          0xde372c53, 0xb216d669, 0x830a9629, 0xef2beb34,
          0x798c6324, 0x15ad6dce, 0x04cf99a2, 0x68ee2eb3]

def _8To32(x32):
    """Convert a 4-byte list to a 32-bit integer"""
    return (((((x32[0] << 8) + x32[1]) << 8) + x32[2]) << 8) + x32[3]    

def _32To8(x32):
    """Convert a 32-bit integer to a 4-byte list"""
    return [(x32 >> 8 * i) & 0xff for i in reversed(range(4))]

def _32To128(x32):
    """Convert a 32-bit 4-element list to a 128-bit integer"""
    return (((((x32[0] << 32) + x32[1]) << 32) + x32[2]) << 32) + x32[3]

def _128To32(x128):
    """Convert a 128-bit integer to a 32-bit 4-element list"""
    return [(x128 >> 32 * i) & 0xffffffff for i in reversed(range(4))]

def _192To32(x192):
    """Convert a 192-bit integer to a 32-bit 6-element list"""
    return [(x192 >> 32 * i) & 0xffffffff for i in reversed(range(6))]

def _256To32(x256):
    """Convert a 256-bit integer to a 32-bit 8-element list"""
    return [(x256 >> 32 * i) & 0xffffffff for i in reversed(range(8))]

def sigma(x128):
    """The double-swap function sigma (used in key scheduling)"""
    return [(x128[0] << 7) & 0xffffff80  | (x128[1] >> 25),
            (x128[1] << 7) & 0xffffff80  | (x128[3] & 0x7f),
            (x128[0] & 0xfe000000)       | (x128[2] >> 7),
            (x128[2] << 25) & 0xfe000000 | (x128[3] >> 7)]

def memoize(f):
    """Memoization function"""
    memo = {}
    def helper(x):
        if x not in memo:
            memo[x] = f(x)
        return memo[x]
    return helper

def mult(p1, p2):
    """Multiply two polynomials in GF(2^8)
       (the irreducible polynomial used in this
       field is x^8 + x^4 + x^3 + x^2 + 1)"""
    p = 0
    while p2:
        if p2 & 0b1:
            p ^= p1
        p1 <<= 1
        if p1 & 0x100:
            p1 ^= 0b11101
        p2 >>= 1
    return p & 0xff

# Auxiliary one-parameter functions defined for memoization
# (to speed up multiplication in GF(2^8))

@memoize    
def x2(y):
    """Multiply by 2 in GF(2^8)"""
    return mult(2, y)

@memoize
def x4(y):
    """Multiply by 4 in GF(2^8)"""    
    return mult(4, y)

@memoize
def x6(y):
    """Multiply by 6 in GF(2^8)"""        
    return mult(6, y)

@memoize
def x8(y):
    """Multiply by 8 in GF(2^8)"""    
    return mult(8, y)

@memoize
def x10(y):
    """Multiply by 10 in GF(2^8)"""    
    return mult(10, y)

def multm0(t32):
    """Multiply the matrix m0 by a 4-element transposed vector in GF(2^8)"""
    return [   t32[0]  ^ x2(t32[1]) ^ x4(t32[2]) ^ x6(t32[3]),
            x2(t32[0]) ^    t32[1]  ^ x6(t32[2]) ^ x4(t32[3]),
            x4(t32[0]) ^ x6(t32[1]) ^    t32[2]  ^ x2(t32[3]),
            x6(t32[0]) ^ x4(t32[1]) ^ x2(t32[2]) ^    t32[3]]    
    
def multm1(t32):
    """Multiply the matrix m1 by a 4-element transposed vector in GF(2^8)"""
    return [    t32[0]  ^  x8(t32[1]) ^  x2(t32[2]) ^ x10(t32[3]),
             x8(t32[0]) ^     t32[1]  ^ x10(t32[2]) ^  x2(t32[3]),
             x2(t32[0]) ^ x10(t32[1]) ^     t32[2]  ^  x8(t32[3]),
            x10(t32[0]) ^ x2(t32[1])  ^  x8(t32[2]) ^     t32[3]]      

def f0(rk, x32):
    """F0 function"""
    t8 = _32To8(rk ^ x32)
    t8 = [s0[t8[0]], s1[t8[1]], s0[t8[2]], s1[t8[3]]]
    return _8To32(multm0(t8))

def f1(rk, x32):
    """F1 function"""
    t8 = _32To8(rk ^ x32)
    t8 = s1[t8[0]], s0[t8[1]], s1[t8[2]], s0[t8[3]]
    return _8To32(multm1(t8))

def gfn4(x32, n):
    """4-branch Generalized Feistel Network function"""
    t32 = x32[:]
    for i in range(0, n << 1, 2):
        t32[1] ^= f0(rk[i], t32[0])
        t32[3] ^= f1(rk[i + 1], t32[2])
        t32 = t32[1:] + t32[:1]
    return t32[3:] + t32[:3]

def gfn4i(x32, n):
    """4-branch Generalized Feistel Network inverse function"""
    t32 = x32[:]
    for i in reversed(range(0, n << 1, 2)):
        t32[1] ^= f0(rk[i], t32[0])
        t32[3] ^= f1(rk[i + 1], t32[2])
        t32 = t32[3:] + t32[:3]
    return t32[1:] + t32[:1]

def gfn8(x32, n):
    """8-branch Generalized Feistel Network function"""
    t32 = x32[:]
    for i in range(0, n << 2, 4):
        t32[1] ^= f0(rk[i], t32[0])
        t32[3] ^= f1(rk[i + 1], t32[2])
        t32[5] ^= f0(rk[i + 2], t32[4])
        t32[7] ^= f1(rk[i + 3], t32[6])     
        t32 = t32[1:] + t32[:1]
    return t32[7:] + t32[:7]

def setKey128(k128):
    """Generate round/whitening keys from a 128-bit key"""
    k32 = _128To32(k128)
    for i in range(len(con128) - nrk):
        rk[i] = con128[i]
    l = gfn4(k32, 12)
    for i in range(nwk):
        wk[i] = k32[i]
    for i in range(0, nrk, 4):
        t32 = [r ^ s for r, s in zip(l, con128[i + 24:i + 28])]
        l = sigma(l)
        if i & 0b100:
            rk[i:i + 4] = [r ^ s for r, s in zip(t32, k32)]
        else:
            rk[i:i + 4] = t32

def setKey192(k192):
    """Generate round/whitening keys from a 192-bit key"""
    k32 = _192To32(k192)
    kl = k32[:4]
    kr = k32[4:6] + [k32[0] ^ 0xffffffff] + [k32[1] ^ 0xffffffff]
    for i in range(len(con192) - nrk):
        rk[i] = con192[i]        
    l = gfn8(kl + kr, 10)
    ll, lr = l[:4], l[4:]
    kk = [r ^ s for r, s in zip(kl, kr)]
    for i in range(nwk):
        wk[i] = kk[i]
    for i in range(0, nrk, 4):
        if i & 0b1100 < 8:
            t32 = [r ^ s for r, s in zip(ll, con192[i + 40:i + 44])]
            ll = sigma(ll)
            if i & 0b100:
                t32 = [r ^ s for r, s in zip(t32, kr)]
        else:
            t32 = [r ^ s for r, s in zip(lr, con192[i + 40:i + 44])]
            lr = sigma(lr)
            if i & 0b100:
                t32 = [r ^ s for r, s in zip(t32, kl)]            
        rk[i:i + 4] = t32     

def setKey256(k256):
    """Generate round/whitening keys from a 256-bit key"""
    k32 = _256To32(k256)
    kl, kr = k32[:4], k32[4:]
    for i in range(len(con256) - nrk):
        rk[i] = con256[i]    
    l = gfn8(kl + kr, 10)
    ll, lr = l[:4], l[4:]
    kk = [r ^ s for r, s in zip(kl, kr)]    
    for i in range(nwk):
        wk[i] = kk[i]
    for i in range(0, nrk, 4):
        if i & 0b1100 < 8:
            t32 = [r ^ s for r, s in zip(ll, con256[i + 40:i + 44])]
            ll = sigma(ll)
            if i & 0b100:
                t32 = [r ^ s for r, s in zip(t32, kr)]
        else:
            t32 = [r ^ s for r, s in zip(lr, con256[i + 40:i + 44])]
            lr = sigma(lr)
            if i & 0b100:
                t32 = [r ^ s for r, s in zip(t32, kl)]                
        rk[i:i + 4] = t32

def setKey(key, keySize):
    """Generate round/whitening keys from the given key"""
    global nr, nrk
    try:
        assert keySize in ksTable
    except AssertionError:
        print("Key size identifier not valid")
        sys.exit("ValueError")
    try:
        assert isinstance(key, int)
    except AssertionError:
        print("Invalid key")
        sys.exit("ValueError")
    try:
        assert key.bit_length() // 8 <= ksTable[keySize]
    except AssertionError:
        print("Key size mismatch")
        sys.exit("ValueError")
    nr = nrTable[keySize]
    nrk = nrkTable[keySize]
    if keySize == "SIZE_128":
        setKey128(key)
    elif keySize == "SIZE_192":
        setKey192(key)
    elif keySize == "SIZE_256":
        setKey256(key)
    else:
        sys.exit("Invalid key size identifier")

def encrypt(ptext):
    """Encrypt a block"""
    t32 = _128To32(ptext)
    t32[1] ^= wk[0]
    t32[3] ^= wk[1]
    t32 = gfn4(t32, nr)
    t32[1] ^= wk[2]
    t32[3] ^= wk[3]
    return _32To128(t32)

def decrypt(ctext):
    """Decrypt a block"""
    t32 = _128To32(ctext)
    t32[1] ^= wk[2]
    t32[3] ^= wk[3]
    t32 = gfn4i(t32, nr)
    t32[1] ^= wk[0]
    t32[3] ^= wk[1]
    return _32To128(t32)

if __name__ == "__main__":

    def checkTestVector(key, keySize, plaintext, ciphertext, nIter = 1000):
        testSuccess = True
        setKey(key, keySize)
        ks = ksTable[keySize] * 8
        ctext = encrypt(plaintext)
        ptext = decrypt(ctext)
        try:
            assert ctext == ciphertext
        except AssertionError:
            print("Error in encryption")
            print("Resulting ciphertext: {:02x}".format(ctext))
            print("Expected ciphertext: {:02x}".format(ciphertext))
            testSuccess = False
        try:
            assert ptext == plaintext
        except AssertionError:
            print("Error in decryption:")
            print("Recovered plaintext: {:02x}".format(ptext))
            print("Expected plaintext: {:02x}".format(plaintext))
            testSuccess = False         
        if not testSuccess:
            return False
        t1 = time()        
        for i in range(nIter):
            setKey(key, keySize)
            ctext = encrypt(plaintext)
        t2 = time()
        avg_elapsed_time = (t2 - t1) * 1000 / nIter        
        print("{:3d}-bit key test ok!".format(ksTable[keySize] * 8))
        print("Average elapsed time for 16-byte block ", end="")
        print("ECB-{0:3d} encryption: {1:0.3f}ms".format(ks, avg_elapsed_time))
        t3 = time()   
        for i in range(nIter):
            setKey(key, keySize)
            ptext = decrypt(ctext)
        t4 = time()
        avg_elapsed_time = (t4 - t3) * 1000 / nIter        
        print("{:3d}-bit key test ok!".format(ksTable[keySize] * 8))
        print("Average elapsed time for 16-byte block ", end="")
        print("ECB-{0:3d} decryption: {1:0.3f}ms".format(ks, avg_elapsed_time))        
        return True

    # The test vectors below are described in document "The 128-bit Blockcipher
    # CLEFIA Algorithm Specification" rev.1, June 1, 2007, Sony Corporation.

    ptext = 0x000102030405060708090a0b0c0d0e0f

    # Test vector for 128-bit key
    key1 = 0xffeeddccbbaa99887766554433221100
    ctext1 = 0xde2bf2fd9b74aacdf1298555459494fd

    # Test vector for 192-bit key
    key2 = 0xffeeddccbbaa99887766554433221100f0e0d0c0b0a09080
    ctext2 = 0xe2482f649f028dc480dda184fde181ad

    # Test vector for 256-bit key
    key3 = 0xffeeddccbbaa99887766554433221100f0e0d0c0b0a090807060504030201000
    ctext3 = 0xa1397814289de80c10da46d1fa48b38a

    try:
        assert checkTestVector(key1, "SIZE_128", ptext, ctext1) and \
               checkTestVector(key2, "SIZE_192", ptext, ctext2) and \
               checkTestVector(key3, "SIZE_256", ptext, ctext3)
    except AssertionError:
        print("At least one test failed")
        sys.exit(1)
    print("All tests passed!")
    sys.exit()

AES implementation in Python

After implementing DES, the next obvious challenge was AES. I was expecting AES code to be simpler to write than DES’ because AES was designed to be implemented in hardware or software, while DES design was geared towards hardware. This time, however, I decided to write an object-oriented API supporting the three different key sizes AES inherited from Rijndael (128-, 192- and 256-bit). In addition, besides the ECB (Electronic Code Book) basic operation mode, this implementation also supports CBC (Cipher Block Chaining) mode.

#!/usr/bin/python3
#
# Author: Joao H de A Franco (jhafranco@acm.org)
#
# Description: AES implementation in Python 3
# (sundAES)
#
# Date: 2013-06-02 (version 1.1)
#       2012-01-16 (version 1.0)
#
# License: Attribution-NonCommercial-ShareAlike 3.0 Unported
# (CC BY-NC-SA 3.0)
#===========================================================
import sys
from itertools import repeat
from functools import reduce
from copy import copy

__all__ = ["setKey","encrypt","decrypt"]

def memoize(func):
"""Memoization function"""
memo = {}
def helper(x):
if x not in memo:
memo[x] = func(x)
return memo[x]
return helper

def mult(p1,p2):
"""Multiply two polynomials in GF(2^8)/x^8+x^4+x^3+x+1"""
p = 0
while p2:
if p2&0x01:
p ^= p1
p1 <<= 1
if p1&0x100:
p1 ^= 0x1b
p2 >>= 1
return p&0xff

# Auxiliary one-parameter functions defined for memoization
# (to speed up multiplication in GF(2^8))

@memoize
def x2(y):
"""Multiplication by 2"""
return mult(2,y)

@memoize
def x3(y):
"""Multiplication by 3"""
return mult(3,y)

@memoize
def x9(y):
"""Multiplication by 9"""
return mult(9,y)

@memoize
def x11(y):
"""Multiplication by 11"""
return mult(11,y)

@memoize
def x13(y):
"""Multiplication by 13"""
return mult(13,y)

@memoize
def x14(y):
"""Multiplication by 14"""
return mult(14,y)

class AES:
"""Class definition for AES objects"""
keySizeTable = {"SIZE_128":16,
"SIZE_192":24,
"SIZE_256":32}
wordSizeTable = {"SIZE_128":44,
"SIZE_192":52,
"SIZE_256":60}
numberOfRoundsTable = {"SIZE_128":10,
"SIZE_192":12,
"SIZE_256":14}
cipherModeTable = {"MODE_ECB":1,
"MODE_CBC":2}
paddingTable = {"NoPadding":0,
"PKCS7Padding":1}
# S-Box
sBox = (0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,
0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,
0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,
0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,
0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,
0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,
0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,
0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,
0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,
0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,
0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,
0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,
0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,
0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,
0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,
0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,
0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,
0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,
0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,
0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,
0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,
0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,
0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,
0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,
0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,
0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,
0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,
0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,
0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,
0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,
0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,
0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16)
# Inverse S-Box
invSBox = (0x52,0x09,0x6a,0xd5,0x30,0x36,0xa5,0x38,
0xbf,0x40,0xa3,0x9e,0x81,0xf3,0xd7,0xfb,
0x7c,0xe3,0x39,0x82,0x9b,0x2f,0xff,0x87,
0x34,0x8e,0x43,0x44,0xc4,0xde,0xe9,0xcb,
0x54,0x7b,0x94,0x32,0xa6,0xc2,0x23,0x3d,
0xee,0x4c,0x95,0x0b,0x42,0xfa,0xc3,0x4e,
0x08,0x2e,0xa1,0x66,0x28,0xd9,0x24,0xb2,
0x76,0x5b,0xa2,0x49,0x6d,0x8b,0xd1,0x25,
0x72,0xf8,0xf6,0x64,0x86,0x68,0x98,0x16,
0xd4,0xa4,0x5c,0xcc,0x5d,0x65,0xb6,0x92,
0x6c,0x70,0x48,0x50,0xfd,0xed,0xb9,0xda,
0x5e,0x15,0x46,0x57,0xa7,0x8d,0x9d,0x84,
0x90,0xd8,0xab,0x00,0x8c,0xbc,0xd3,0x0a,
0xf7,0xe4,0x58,0x05,0xb8,0xb3,0x45,0x06,
0xd0,0x2c,0x1e,0x8f,0xca,0x3f,0x0f,0x02,
0xc1,0xaf,0xbd,0x03,0x01,0x13,0x8a,0x6b,
0x3a,0x91,0x11,0x41,0x4f,0x67,0xdc,0xea,
0x97,0xf2,0xcf,0xce,0xf0,0xb4,0xe6,0x73,
0x96,0xac,0x74,0x22,0xe7,0xad,0x35,0x85,
0xe2,0xf9,0x37,0xe8,0x1c,0x75,0xdf,0x6e,
0x47,0xf1,0x1a,0x71,0x1d,0x29,0xc5,0x89,
0x6f,0xb7,0x62,0x0e,0xaa,0x18,0xbe,0x1b,
0xfc,0x56,0x3e,0x4b,0xc6,0xd2,0x79,0x20,
0x9a,0xdb,0xc0,0xfe,0x78,0xcd,0x5a,0xf4,
0x1f,0xdd,0xa8,0x33,0x88,0x07,0xc7,0x31,
0xb1,0x12,0x10,0x59,0x27,0x80,0xec,0x5f,
0x60,0x51,0x7f,0xa9,0x19,0xb5,0x4a,0x0d,
0x2d,0xe5,0x7a,0x9f,0x93,0xc9,0x9c,0xef,
0xa0,0xe0,0x3b,0x4d,0xae,0x2a,0xf5,0xb0,
0xc8,0xeb,0xbb,0x3c,0x83,0x53,0x99,0x61,
0x17,0x2b,0x04,0x7e,0xba,0x77,0xd6,0x26,
0xe1,0x69,0x14,0x63,0x55,0x21,0x0c,0x7d)

# Instance variables
wordSize = None
w = [None]*60 # Round subkeys list
keyDefined = None # Key definition flag
numberOfRounds = None
cipherMode = None
padding = None # Padding scheme
ivEncrypt = None # Initialization
ivDecrypt = None # vectors

def __init__(self,mode,padding = "NoPadding"):
"""Create a new instance of an AES object"""
try:
assert mode in AES.cipherModeTable
except AssertionError:
print("Cipher mode not supported:",mode)
sys.exit("ValueError")
self.cipherMode = mode
try:
assert padding in AES.paddingTable
except AssertionError:
print("Padding scheme not supported:",padding)
sys.exit(ValueError)
self.padding = padding
self.keyDefined = False

def intToList(self,number):
"""Convert an 16-byte number into a 16-element list"""
return [(number>>i)&0xff for i in reversed(range(0,128,8))]

def intToList2(self,number):
"""Converts an integer into one (or more) 16-element list"""
lst = []
while number:
lst.append(number&0xff)
number >>= 8
m = len(lst)%16
if m == 0 and len(lst) != 0:
return lst[::-1]
else:
return list(bytes(16-m)) + lst[::-1]

def listToInt(self,lst):
"""Convert a list into a number"""
return reduce(lambda x,y:(x<<8)+y,lst)

def wordToState(self,wordList):
"""Convert list of 4 words into a 16-element state list"""
return [(wordList[i]>>j)&0xff
for j in reversed(range(0,32,8)) for i in range(4)]

def listToState(self,list):
"""Convert a 16-element list into a 16-element state list"""
return [list[i+j] for j in range(4) for i in range(0,16,4)]

stateToList = listToState # this function is an involution

def subBytes(self,state):
"""SubBytes transformation"""
return [AES.sBox[e] for e in state]

def invSubBytes(self,state):
"""Inverse SubBytes transformation"""
return [AES.invSBox[e] for e in state]

def shiftRows(self,s):
"""ShiftRows transformation"""
return s[:4]+s[5:8]+s[4:5]+s[10:12]+s[8:10]+s[15:]+s[12:15]

def invShiftRows(self,s):
"""Inverse ShiftRows transformation"""
return s[:4]+s[7:8]+s[4:7]+s[10:12]+s[8:10]+s[13:]+s[12:13]

def mixColumns(self,s):
"""MixColumns transformation"""
return [x2(s[i])^x3(s[i+4])^ s[i+8] ^ s[i+12] for i in range(4)]+ \
[ s[i] ^x2(s[i+4])^x3(s[i+8])^ s[i+12] for i in range(4)]+ \
[ s[i] ^ s[i+4] ^x2(s[i+8])^x3(s[i+12]) for i in range(4)]+ \
[x3(s[i])^ s[i+4] ^ s[i+8] ^x2(s[i+12]) for i in range(4)]

def invMixColumns(self,s):
"""Inverse MixColumns transformation"""
return [x14(s[i])^x11(s[i+4])^x13(s[i+8])^ x9(s[i+12]) for i in range(4)]+ \
[ x9(s[i])^x14(s[i+4])^x11(s[i+8])^x13(s[i+12]) for i in range(4)]+ \
[x13(s[i])^ x9(s[i+4])^x14(s[i+8])^x11(s[i+12]) for i in range(4)]+ \
[x11(s[i])^x13(s[i+4])^ x9(s[i+8])^x14(s[i+12]) for i in range(4)]

def addRoundKey (self,subkey,state):
"""AddRoundKey transformation"""
return [i^j for i,j in zip(subkey,state)]

xorLists = addRoundKey

def rotWord(self,number):
"""Rotate subkey left"""
return (((number&0xff000000)>>24) +
((number&0xff0000)<<8) +
((number&0xff00)<<8) +
((number&0xff)<<8))

def subWord(self,key):
"""Substitute subkeys bytes using S-box"""
return ((AES.sBox[(key>>24)&0xff]<<24) +
(AES.sBox[(key>>16)&0xff]<<16) +
(AES.sBox[(key>>8)&0xff]<<8) +
AES.sBox[key&0xff])

def setKey(self,keySize,key,iv = None):
"""KeyExpansion transformation"""
rcon = (0x00,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x1B,0x36)
try:
assert keySize in AES.keySizeTable
except AssertionError:
print("Key size identifier not valid")
sys.exit("ValueError")
try:
assert isinstance(key,int)
except AssertionError:
print("Invalid key")
sys.exit("ValueError")
klen = len("{:02x}".format(key))//2
try:
assert klen <= AES.keySizeTable[keySize]
except AssertionError:
print("Key size mismatch")
sys.exit("ValueError")
try:
assert ((self.cipherMode == "MODE_CBC" and isinstance(iv,int)) or
self.cipherMode == "MODE_ECB")
except AssertionError:
print("IV is mandatory for CBC mode")
sys.exit(ValueError)

if self.cipherMode == "MODE_CBC":
temp = self.intToList(iv)
self.ivEncrypt = copy(temp)
self.ivDecrypt = copy(temp)
nr = AES.numberOfRoundsTable[keySize]
self.numberOfRounds = nr
self.wordSize = AES.wordSizeTable[keySize]
if nr == 10:
nk = 4
keyList = self.intToList(key)
elif nr == 12:
nk = 6
keyList = self.intToList(key>>64) + \
(self.intToList(key&int("ff"*32,16)))[8:]
else:
nk = 8
keyList = self.intToList(key>>128) + \
self.intToList(key&int("ff"*64,16))
for index in range(nk):
self.w[index] = (keyList[4*index]<<24) + \
(keyList[4*index+1]<<16) + \
(keyList[4*index+2]<<8) +\
keyList[4*index+3]
for index in range(nk,self.wordSize):
temp = self.w[index - 1]
if index % nk == 0:
temp = (self.subWord(self.rotWord(temp)) ^
rcon[index//nk]<<24)
elif self.numberOfRounds == 14 and index%nk == 4:
temp = self.subWord(temp)
self.w[index] = self.w[index-nk]^temp
self.keyDefined = True
return

def getKey(self,operation):
"""Return next round subkey for encryption or decryption"""
if operation == "encryption":
for i in range(0,self.wordSize,4):
yield self.wordToState(self.w[i:i+4])
else: # operation = "decryption":
for i in reversed(range(0,self.wordSize,4)):
yield self.wordToState(self.w[i:i+4])

def encryptBlock(self,plaintextBlock):
"""Encrypt a 16-byte block with key already defined"""
key = self.getKey("encryption")
state = self.listToState(plaintextBlock)
state = self.addRoundKey(next(key),state)
for _ in repeat(None,self.numberOfRounds - 1):
state = self.subBytes(state)
state = self.shiftRows(state)
state = self.mixColumns(state)
state = self.addRoundKey(next(key),state)
state = self.subBytes(state)
state = self.shiftRows(state)
state = self.addRoundKey(next(key),state)
return self.stateToList(state)

def decryptBlock(self,ciphertextBlock):
"""Decrypt a 16-byte block with key already defined"""
key = self.getKey("decryption")
state = self.listToState(ciphertextBlock)
state = self.addRoundKey(next(key),state)
for _ in repeat(None,self.numberOfRounds - 1):
state = self.invShiftRows(state)
state = self.invSubBytes(state)
state = self.addRoundKey(next(key),state)
state = self.invMixColumns(state)
state = self.invShiftRows(state)
state = self.invSubBytes(state)
state = self.addRoundKey(next(key),state)
return self.stateToList(state)

def padData(self,data):
"""Add PKCS7 padding to plaintext (or just add bytes to fill a block)"""
paddingLength = 16-(len(data)%16)
if self.padding == "NoPadding":
paddingLength %= 16
if type(data) is bytes:
return data+bytes(list([paddingLength]*paddingLength))
else:
return [ord(s) for s in data]+[paddingLength]*paddingLength

def unpadData(self,byteList):
"""Remove PKCS7 padding (if present) from plaintext"""
if self.padding == "PKCS7Padding":
return "".join(chr(e) for e in byteList[:-byteList[-1]])
else:
return "".join(chr(e) for e in byteList)

def encrypt(self,input):
"""Encrypt plaintext passed as a string or as an integer"""
try:
assert self.keyDefined
except AssertionError:
print("Key not defined")
sys.exit("ValueError")

if type(input) is int:
inList = self.intToList2(input)
else:
inList = self.padData(input)
outList = []
if self.cipherMode == "MODE_CBC":
outBlock = self.ivEncrypt
for i in range(0,len(inList),16):
auxList = self.xorLists(outBlock,inList[i:i+16])
outBlock = self.encryptBlock(auxList)
outList += outBlock
self.ivEncrypt = outBlock
else:
for i in range(0,len(inList),16):
outList += self.encryptBlock(inList[i:i+16])
if type(input) is int:
return self.listToInt(outList)
else:
return outList

def decrypt(self,input):
"""Decrypt ciphertext passed as a string or as an integer"""
try:
assert self.keyDefined
except AssertionError:
print("Key not defined")
sys.exit("ValueError")
if type(input) is int:
inList = self.intToList2(input)
else:
inList = input
outList = []
if self.cipherMode == "MODE_CBC":
oldInBlock = self.ivDecrypt
for i in range(0,len(inList),16):
newInBlock = inList[i:i+16]
auxList = self.decryptBlock(newInBlock)
outList += self.xorLists(oldInBlock,auxList)
oldInBlock = newInBlock
self.ivDecrypt = oldInBlock
else:
for i in range(0,len(inList),16):
outList += self.decryptBlock(inList[i:i+16])
if type(input) is int:
return self.listToInt(outList)
else:
return self.unpadData(outList)

The code below informally verify the correctness of the implementation with the help of the test vectors described in NIST document SP800-38A, Recommendation for Block Cipher Modes of Operation – Methods and Techniques:

import pyAES

def intToList(number):
    """Convert a 16-byte number into a 16-element list"""
    return [(number >> 120) & 0xff, (number >> 112) & 0xff,
            (number >> 104) & 0xff, (number >> 96)  & 0xff,
            (number >> 88)  & 0xff, (number >> 80)  & 0xff,
            (number >> 72)  & 0xff, (number >> 64)  & 0xff,
            (number >> 56)  & 0xff, (number >> 48)  & 0xff,
            (number >> 40)  & 0xff, (number >> 32)  & 0xff,
            (number >> 24)  & 0xff, (number >> 16)  & 0xff,
            (number >> 8)   & 0xff,  number & 0xff]

def intToText(hexNumber):
    """Convert a 16-byte number into a 16 char text string"""
    return "".join(chr(e) for e in intToList(hexNumber))

def checkTestVector1(mode, keySize, key, plaintext, ciphertext, iv = None):
    """Check test vectors for single block encryption and decryption"""
    success = True
    obj = pyAES.AES(mode)
    obj.setKey(keySize, key, iv)
    for i, (p, c) in enumerate(zip(plaintext, ciphertext)):
        p_text = intToText(p)
        c_text = intToList(c)
        code = "{0:3s}-{1:3s}".format(mode[5:], keySize[5:])
        try:
            assert obj.encrypt(p_text) == c_text
        except AssertionError:
            print(code, "encryption #{:d} failed".format(i))
            success = False
        try:
            assert obj.decrypt(c_text) == p_text
        except AssertionError:
            print(code, "decryption #{:d} failed".format(i))
            success = False
    if success:
        print(code, "encryption/decryption ok")
    return success

def checkTestVector2(mode, keySize, plaintext, key1, key2, iv1 = None, iv2 = None):
    obj1 = pyAES.AES(mode, "PKCS5Padding")
    obj1.setKey(keySize, key1, iv1)
    obj2 = pyAES.AES(mode, "PKCS5Padding")
    obj2.setKey(keySize, key2, iv2)
    ciphertext1 = obj1.encrypt(plaintext)
    ciphertext2 = obj2.encrypt(plaintext)
    plaintext1 = obj1.decrypt(ciphertext1)
    plaintext2 = obj2.decrypt(ciphertext2)
    code = "{0:3s}-{1:3s}".format(mode[5:], keySize[5:])
    try:
        assert plaintext1 == plaintext and plaintext2 == plaintext
    except AssertionError:
        print("Multi-block", code, "encryption/decryption failed")
        return False
    print("Multi-block", code, "encryption/decryption ok")
    return True

#===========================================================================

# Test vectors from NIST SP800-38A sections F.1.1 and F.1.2
def ECB_128_NOPAD():
    key = 0x2b7e151628aed2a6abf7158809cf4f3c
    plaintext =  [0x6bc1bee22e409f96e93d7e117393172a,
                  0xae2d8a571e03ac9c9eb76fac45af8e51,
                  0x30c81c46a35ce411e5fbc1191a0a52ef,
                  0xf69f2445df4f9b17ad2b417be66c3710]
    ciphertext = [0x3ad77bb40d7a3660a89ecaf32466ef97,
                  0xf5d3d58503b9699de785895a96fdbaaf,
                  0x43b1cd7f598ece23881b00e3ed030688,
                  0x7b0c785e27e8ad3f8223207104725dd4]
    return checkTestVector1("MODE_ECB", "SIZE_128", key, plaintext, ciphertext)

# Test vectors from NIST SP800-38A sections F.1.3 and F.1.4
def ECB_192_NOPAD():
    key = 0x8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b
    plaintext =  [0x6bc1bee22e409f96e93d7e117393172a,
                  0xae2d8a571e03ac9c9eb76fac45af8e51,
                  0x30c81c46a35ce411e5fbc1191a0a52ef,
                  0xf69f2445df4f9b17ad2b417be66c3710]
    ciphertext = [0xbd334f1d6e45f25ff712a214571fa5cc,
                  0x974104846d0ad3ad7734ecb3ecee4eef,
                  0xef7afd2270e2e60adce0ba2face6444e,
                  0x9a4b41ba738d6c72fb16691603c18e0e]
    return checkTestVector1("MODE_ECB", "SIZE_192", key, plaintext, ciphertext)

# Test vectors from NIST SP800-38A sections F.1.5 and F.1.6
def ECB_256_NOPAD():
    key = 0x603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4
    plaintext =  [0x6bc1bee22e409f96e93d7e117393172a,
                  0xae2d8a571e03ac9c9eb76fac45af8e51,
                  0x30c81c46a35ce411e5fbc1191a0a52ef,
                  0xf69f2445df4f9b17ad2b417be66c3710]
    ciphertext = [0xf3eed1bdb5d2a03c064b5a7e3db181f8,
                  0x591ccb10d410ed26dc5ba74a31362870,
                  0xb6ed21b99ca6f4f9f153e7b1beafed1d,
                  0x23304b7a39f9f3ff067d8d8f9e24ecc7]
    return checkTestVector1("MODE_ECB", "SIZE_256", key, plaintext, ciphertext)

# Test vectors from NIST SP800-38A sections F.2.1 and F.2.2
def CBC_128_NOPAD():
    key = 0x2b7e151628aed2a6abf7158809cf4f3c
    iv = 0x000102030405060708090a0b0c0d0e0f
    plaintext =  [0x6bc1bee22e409f96e93d7e117393172a,
                   0xae2d8a571e03ac9c9eb76fac45af8e51,
                   0x30c81c46a35ce411e5fbc1191a0a52ef,
                   0xf69f2445df4f9b17ad2b417be66c3710]
    ciphertext = [0x7649abac8119b246cee98e9b12e9197d,
                  0x5086cb9b507219ee95db113a917678b2,
                  0x73bed6b8e3c1743b7116e69e22229516,
                  0x3ff1caa1681fac09120eca307586e1a7]
    return checkTestVector1("MODE_CBC", "SIZE_128", key, plaintext, ciphertext, iv)

# Test vectors from NIST SP800-38A sections F.2.3 and F.2.4
def CBC_192_NOPAD():
    key = 0x8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b
    iv = 0x000102030405060708090a0b0c0d0e0f
    plaintext =  [0x6bc1bee22e409f96e93d7e117393172a,
                  0xae2d8a571e03ac9c9eb76fac45af8e51,
                  0x30c81c46a35ce411e5fbc1191a0a52ef,
                  0xf69f2445df4f9b17ad2b417be66c3710]
    ciphertext = [0x4f021db243bc633d7178183a9fa071e8,
                  0xb4d9ada9ad7dedf4e5e738763f69145a,
                  0x571b242012fb7ae07fa9baac3df102e0,
                  0x08b0e27988598881d920a9e64f5615cd]
    return checkTestVector1("MODE_CBC", "SIZE_192", key, plaintext, ciphertext, iv)

# Test vectors from NIST SP800-38A sections F.2.5 and F.2.6
def CBC_256_NOPAD():
    key = 0x603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4
    iv = 0x000102030405060708090a0b0c0d0e0f
    plaintext=  [0x6bc1bee22e409f96e93d7e117393172a,
                 0xae2d8a571e03ac9c9eb76fac45af8e51,
                 0x30c81c46a35ce411e5fbc1191a0a52ef,
                 0xf69f2445df4f9b17ad2b417be66c3710]
    ciphertext = [0xf58c4c04d6e5f1ba779eabfb5f7bfbd6,
                  0x9cfc4e967edb808d679f777bc6702c7d,
                  0x39f23369a9d9bacfa530e26304231461,
                  0xb2eb05e2c39be9fcda6c19078c6a9d1b]
    return checkTestVector1("MODE_CBC", "SIZE_256", key, plaintext, ciphertext, iv)

#===========================================================================

# Two multi-block encryptions in ECB mode with 128-bit key
def ECB_128_PKCS5():
    plaintext = "The quick brown fox jumps over the lazy dog"
    key1 = 0x000102030405060708090a0b0c0d0e0f
    key2 = 0xffeeddccbbaa99887766554433221100
    return checkTestVector2("MODE_ECB", "SIZE_128", plaintext, key1, key2)

# Two multi-block encryptions in ECB mode with 192-bit key
def ECB_192_PKCS5():
    plaintext = "The quick brown fox jumps over the lazy dog"
    key1 = 0x000102030405060708090a0b0c0d0e0f1011121314151617
    key2 = 0x1716151413121110ffeeddccbbaa99887766554433221100
    return checkTestVector2("MODE_ECB", "SIZE_192", plaintext, key1, key2)

# Two multi-block encryptions in ECB mode with 256-bit key
def ECB_256_PKCS5():
    plaintext = "The quick brown fox jumps over the lazy dog"
    key1 = 0x000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
    key2 = 0x1f1e1d1c1b1a19181716151413121110ffeeddccbbaa99887766554433221100
    return checkTestVector2("MODE_ECB", "SIZE_256", plaintext, key1, key2)

# Two multi-block encryptions in CBC mode with 128-bit key
def CBC_128_PKCS5():
    plaintext = "The quick brown fox jumps over the lazy dog"
    key1 = 0x000102030405060708090a0b0c0d0e0f
    key2 = 0xffeeddccbbaa99887766554433221100
    iv1 = 0x0123cdef456789ab0123cdef456789ab
    iv2 = 0xab0123cdef456789ab0123cdef456789
    return checkTestVector2("MODE_CBC", "SIZE_128", plaintext, key1, key2, iv1, iv2)

# Two multi-block encryptions in CBC mode with 192-bit key
def CBC_192_PKCS5():
    plaintext = "The quick brown fox jumps over the lazy dog"
    key1 = 0x000102030405060708090a0b0c0d0e0f1011121314151617
    key2 = 0x1716151413121110ffeeddccbbaa99887766554433221100
    iv1 = 0x0123cdef456789ab0123cdef456789ab
    iv2 = 0xab0123cdef456789ab0123cdef456789
    return checkTestVector2("MODE_CBC", "SIZE_192", plaintext, key1, key2, iv1, iv2)

# Two multi-block encryptions in CBC mode with 256-bit key
def CBC_256_PKCS5():
    plaintext = "The quick brown fox jumps over the lazy dog"
    key1 = 0x000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
    key2 = 0x1f1e1d1c1b1a19181716151413121110ffeeddccbbaa99887766554433221100
    iv1 = 0x0123cdef456789ab0123cdef456789ab
    iv2 = 0xab0123cdef456789ab0123cdef456789
    return checkTestVector2("MODE_CBC", "SIZE_256", plaintext, key1, key2, iv1, iv2)

def main():
    # Perform vector tests
    testSuccess = True
    for pad in ["NOPAD", "PKCS5"]:
        for mode in ["ECB", "CBC"]:
            for size in ["128", "192", "256"]:
                testVector = mode + "_" + size + "_" + pad + "()"
                testSuccess = testSuccess & eval(testVector)
    if testSuccess:
        print("All tests passed!")

if __name__ == '__main__':
    main()