# The Travelling Rook A rook is placed in the corner of a standard (8 x 8) chessboard. Every minute, it makes a legal move, where each move has the same probability of being chosen. What is the expected number of minutes for the rook to reach the opposite corner?

This puzzle was proposed at the HMMT November 2015 competition (Theme round, problem #8). HMMT is the Harvard-MIT Mathematics Tournament, one of the largest and most prestigious high school competitions in the world. Each event gathers close to 1,000 students from around the globe, including top scorers at both U.S. and international math olympiads.

The minimum number of moves (and minutes) for the rook, being at one corner, to get to the opposite one is just 2 (two); the probability that this happens is 1/7 * 1/14 + 1/7 * 1/14 = 1/49 (almost 2%). On the other hand, the set (or more exactly, the tree) of possible “journeys” for the rook, which account for the remaining 98%, is infinite; each journey takes more (or much more) than two minutes. What would be the expected number of minutes for the rook to get to its final destination: ten, twenty, fifty? One hundred maybe?

# Simulation

One obvious solution is to simulate a “reasonable” number (say 1 million times) of random rook journeys, each one starting at the same corner square and ending on the opposite one. The C program below took roughly 1.3 seconds on my PC to print the average journey duration: 70.022925 minutes.

#include <time.h>
#include <stdlib.h>
#include <stdio.h>

typedef struct {
int x;
int y;
} square;

square rookMove (square sq) {
int newCoord = (rand() % 8) + 1;
if (rand() % 2) {
while (newCoord == sq.x)
newCoord = (rand() % 8) + 1;
sq.x = newCoord;
} else {
while (newCoord == sq.y)
newCoord = (rand() % 8) + 1;
sq.y = newCoord;
}
return sq;
}

float rookJourneys (int trials) {
int moves = 0;
for (int i = 0; i < trials; i++) {
square sq = {1, 1};
while (sq.x != 8 || sq.y != 8) {
sq = rookMove(sq);
moves++;
}
}
return (float) moves / (float) trials;
}

void main () {
srand(time(NULL));
printf("%.6f\n", rookJourneys(1000000));
}


# Markov chain

We can also attack this problem treating the sequence of rook moves as a discrete-time Markov chain.

A Markov chain (or process) can be described by a set of states, $S = \{s_1, s_2, . . . , s_n\}$ and a probabilities matrix, $M =\{p_{ij}\}, 1 \leq i,j \leq n$. The process starts in one of these states and moves successively from one state to another. Each move is called a step. If the chain is currently in state $s_i$, then it moves to state $s_j$ at the next step with a probability denoted by $p_{ij}$, and this probability does not depend upon which states the chain was in before the current state (we say that a Markov chain has limited memory, as any future state depends on the past m states).

The probabilities $p_{ij}$ are called transition probabilities. The process can remain in the state it is in, and this occurs with probability $p_{ii}$. An initial probability distribution, defined on S, specifies the starting state. Usually, this is done by specifying a particular state as the starting state.

Let’s now see the what are the particular characteristics of our newly discovered Markov chain. One can associate a unique state to each of the 64 squares the rook can eventually go. The rook initial square — which coordinates are (1, 1) — is the starting state for all sequences. It’s also easy to see that all transition probabilities of the form $p_{ii}$ are zero (with one exception; see below) since the rook has to make a move every minute (it cannot stay in the same square). As any transition probability depends only on the starting and destination states, this Markov chain has order (or memory) $m=1$.

Our Markov chain has another interesting property: it has an absorbing state — with coordinates (8,8) — a state it is impossible to leave, meaning that $p_{ii} = 1$ $\land$ $p_{ij} = 0$, $i \neq j$ for the absorbing state $s_i$ (those two conditions can be expressed more concisely, using Kronecker’s delta, as $p_{ij} = \delta_{ij}$). All other states are transient.

The Magma script (see box below) calculates the expected number of minutes taken by the rook to get to the final square starting on any other square. It follows the very clear and interesting explanation about absorbing Markov chains found in “Introduction to Probability“, Gristead & Snell (see chap. 11, section 11.2, pp. 416-419).

/**
* Square (i, j) on the board (1 <= i,j <= 8) is unequivocally
* represented by state (i, j) = 8 * (i - 1) + (j - 1) + 1.
* Note that 1 <= state (i, j) <= 64.
*/
function state (i, j)
return 8 * (i - 1) + (j - 1) + 1;
end function;
/**
* This function returns a SeqEnum containing the coordinates
* (row/column) associated with the input state (1 <= i,j <= 8).
*/
function unstate (n)
return [(n - 1) mod 8 + 1, (n - 1) div 8 + 1];
end function;
/**
* Entry Q[u, v] on the transition probability matrix below
* denotes the probability of a transition from transient
* state u to transient state v.
*/
Q := ZeroMatrix (RealField (), 63, 63);
for i, j, k in [1 .. 8] do
// make sure the absorbing state (8, 8) is excluded
if i + j ne 16 and i + k ne 16 and j + k ne 16 then
if k ne j then
// probability to move on the same row: 1/2
// probability to move to a square on that row: 1/7
Q [state (i, j)][state (i, k)] := (1 / 2) * (1 / 7);
end if;
if k ne i then
// probability to move on the same column: 1/2
// probability to move to a square on that column: 1/7
Q [state (i, j)][state (k, j)] := (1 / 2) * (1 / 7);
end if;
end if;
end for;
/**
* N is the 'fundamental matrix' for P, the transition probability
* matrix for all allowed states, either transient or absorbing.
*/
I := IdentityMatrix (RealField (), 63);
N := (I - Q) ^ -1;
c := Matrix (RealField (), 63, 1, [1.0 : k in [1 .. 63]]);
t := N * c;
printf "Starting square\t Expected time to reach destination\n";
for n in [1 .. 63] do
printf "    (%o, %o)\t t = %o\n",
unstate(n), unstate(n), t[n];
end for;


In simple terms, this script evaluates the expression below for each one of the 63 possible starting squares: $E_{ij} = \displaystyle\sum_{\substack{all \, paths\\ starting \, on\\ square \, (i,j)}}^{} probability \, [path] \, \times \, time \, (path)$

Magma is a commercial software package designed for computations in algebra, number theory, algebraic geometry and algebraic combinatorics. The mentioned script was executed using Magma Calculator, a web interface that provides free access to the Magma software under certain run time and script size restrictions.

After just 0.3 seconds, we have the desired results (see box below). It seems that the expected times could probably be integers (63 and 70), something we haven’t been able to notice during the simulation session.

Using the same tool, it’s also easy to evaluate the probability that the rook takes, say, 500 minutes, to reach the destination square starting from the square (1, 1). All that is needed is to execute the command ((Q^500)*c [state(1, 1)], which gives 0.066% as the answer.

Starting square  Expected time to reach destination
(1, 1)       t = 70.0000000000000000000000000016
(2, 1)       t = 70.0000000000000000000000000030
(3, 1)       t = 70.0000000000000000000000000030
(4, 1)       t = 70.0000000000000000000000000027
(5, 1)       t = 70.0000000000000000000000000025
(6, 1)       t = 70.0000000000000000000000000030
(7, 1)       t = 70.0000000000000000000000000024
(8, 1)       t = 63.0000000000000000000000000025
(1, 2)       t = 70.0000000000000000000000000023
(2, 2)       t = 70.0000000000000000000000000019
...                         ...
(6, 7)       t = 70.0000000000000000000000000025
(7, 7)       t = 70.0000000000000000000000000021
(8, 7)       t = 63.0000000000000000000000000017
(1, 8)       t = 63.0000000000000000000000000018
(2, 8)       t = 63.0000000000000000000000000026
(3, 8)       t = 63.0000000000000000000000000022
(4, 8)       t = 63.0000000000000000000000000023
(5, 8)       t = 63.0000000000000000000000000023
(6, 8)       t = 63.0000000000000000000000000027
(7, 8)       t = 63.0000000000000000000000000023


# Conditional probabilities

One can further improve the Markovian approach used by looking at the pattern showed in the previous results. Considering the minimum number of moves taken by the rook to get to the destination square, one can divide the chessboard squares into just three types, thus greatly reducing the size of the transition probabilities matrix from 64×64 to only 3×3.

For the sake of notation, we call a type n square any one from which the rook must take at least n move(s), or second(s), to get to the target square. This way, the chessboard can be partitioned into 1 (one) destination square (type 0), 14 (fourteen) “edge” squares (type 1) and 49 (forty-nine) remaining squares (type 2). For all type 1 squares, the expected time is close to 63 minutes while for every type 2 one the expected time is a little bit longer, around 70 minutes. A much simpler transition probability matrix can then be defined taking into account only five transitions: $type \, 2 \rightarrow type \, 2$, $type \, 2 \rightarrow type \, 1$, $type \, 1 \rightarrow type \, 2$, $type \, 1 \rightarrow type \, 1$ and $type \, 1 \rightarrow type \,0$. For convenience, we can denote the associated transition probability $p \, [type \, i \rightarrow type \, j]$ as $p_{ij}$.

Let the expected number of minutes it will take the rook to reach the destination square from any $type \, 1$ square be $\bold{E_1}$. Let the expected number of minutes it will take the rook to get to the same destination square from any $type \, 2$ square be $\bold{E_2}$. Now we can write the following two linear equations relating $\bold{E_1}$ and $\bold{E_2}$: $\bold{E_1} = p_{10} \, . \, 1 + p_{11} \, . \, (\bold{E_1} + 1) + p_{12} \, . \, (\bold{E_2} + 1)$ and $\bold{E_2} = p_{21} \, . \, (\bold{E_1} + 1) + p_{22} \, . \, (\bold{E_2} + 1)$

The transition probabilites are easy to calculate: $p_{10} = 1/14$ $p_{11} = 6/14$ $p_{12} = 7/14$ $p_{21} = 12/14$ $p_{22} = 2/14$

(of course, $\displaystyle\sum_{j=0}^{2} p_{1j} = \displaystyle\sum_{j=1}^{2} p_{2j} = 1$).

We can now solve the equation system, which gives the solution $\bold{E_1}$ = 63 minutes and $\bold{E_2}$ = 70 minutes (our goal).

This approach not only is simple but also powerful since it definitely shows that the expected time is an integer. It can also be easily extended to chessboards of other sizes, e.g. 10×10 or 15×15.

# Who’s (really) the best chess player?

You’ve just made it into the finals of a chess tournament. Although your opponent is “stronger” than you, you are trying to think of some strategy to beat him on the board.

There will be 2 (two) matches, and if they both result in a tie, a third match will be played to decide the winner, who will take home a $1,000 prize. If the play-off also ends in a draw, you’ll share the prize with your opponent. The scoring system is the one used in chess tournaments since the middle of the 19th century: players who scored a win in a game are awarded 1 (one) point, while those scoring draws are given a 0.5 (half-point) each. Losing a game, as you might expect, is worth 0 (zero) point. You know, from previous games against the same opponent, that you can choose between two different strategies: “play fearlessly”, in which you win 45% and lose 55% of the time, or “play defensively”, in which you draw 90% and lose 10% of the time (but selecting this alternative you’ll have no chance to win). Note that both strategies have the same expected value since 0.45 x 1.0 = 0.9 x 0.5. If you play optimally, what are your chances of beating your opponent (and winning the$1,000 prize)?

The decision tree below shows all possible sequence of events that result in your winning the tournament. To keep the diagram simple, all remaining, non-winning sequences were omitted. Obviously this decision tree applies equally well to any other zero-sum game besides chess that can also result in a draw (e.g. checkers). It is really surprising that the probability of you, the “weaker” player, winning the finals is around 0.537 (or 0.536625 to be exact), which is greater than 0.5. Each strategy, analyzed separately, confirms that, on the average, your opponent will win more games than you. Yet the odds of grabbing the \$1,000 are in your favor! How come?

# N-ary m-sequence generator in Python

Maximum length sequences (or m-sequences) are bit sequences generated using maximal LFSRs (Linear Feedback Shift Registers) and are so called because they are periodic and reproduce every binary sequence that can be represented by the shift registers (i.e., for length-m registers they produce a sequence of length $2^{m}-1$). Although originally defined for binary sequences, the concept of m-sequence can be extended to sequences over $GF(n), n>2$.

Despite being deterministically generated, m-sequences have nice statistical properties, which resemble those of white noise (they are spectrally flat, with the exception of a near-zero constant term). For this reason, m-sequences are often referred to as pseudo random noise code (PN code). Unfortunately though, unpredictability is not among those properties (see below).

The configuration of the feedback taps in a binary LFSR can be expressed in finite field arithmetic as a polynomial in $GF(2^{n})$. The LFSR is maximal-length if and only if the corresponding feedback polynomial is primitive. The linear complexity (LC) of a given periodic sequence is the number of cells in the shortest LFSR that can generate that sequence. The correlation between two sequences is the complex inner product of the first sequence with a shifted version of the second sequence. It is called an autocorrelation if the two sequences are the same or a cross-correlation if they are distinct. Particularly interesting for spread spectrum application are sequences (not necessarily m-sequences) that exhibit low autocorrelation and low cross-correlation (the ideal correlation function would then be the Kronecker’s delta).

Apart from spread spectrum communications, m-sequences are used in a variety of areas including digital watermarking and cryptography. As m-sequences are derived from linear recurrence relations — which lead to fairly easy cryptanalysis — they must be processed by nonlinear functions in order to be used in cryptographic applications. A good example is Trivium, a 80-bit stream cipher that consists of three shift registers of different lengths.

#!/usr/bin/python3
#
# Author: Joao H de A Franco (jhafranco@acm.org)
#
# Description: N-ary sequence generator in Python
#
# Version: 1
#
# Date: 2014-02-14
#
#          (CC BY-NC-SA 3.0)
#===========================================================

from functools import reduce
from fractions import Fraction
from cmath import rect,pi

def flatList(s,q):
"""Converts (list of) polynomials into (list of) elements
of finite field mapped as integers.
s: list of polynomials
q: order of finite field"""
if type(s) is int:
return s
elif type(s) is list:
return [reduce(lambda i,j:(i*q)+j,e) for e in s]
else:
raise TypeError

def printListOfNumbers(S,L,*X):
"""Print list of numbers according to their particular
format (integer, float or complex)"""
print(S+" [",end="")
for i,e in enumerate(L):
if type(e) is complex:
print("{:5.3f}{:+5.3f}i".format(e.real,e.imag),end="")
elif type(e) is float:
print("{:5.3f}".format(e),end="")
elif type(e) is int:
print("{:d}".format(e),end="")
elif type(e) is Fraction:
print("{:s}".format(e),end="")
else:
raise TypeError
if i<len(L)-1:
print(", ",end="")
print("]",*X)

def xac(s,q=None,d=None,n=None):
"""Evaluates the complex auto-correlation of a periodic
sequence with increasing delays within the period.
Input length must correspond to a full period.
s: q-ary periodic sequence
q: order of finite field
d: maximum denominator allowed in fractions
n: number of decimal places in floating point numbers"""
return xcc(s,s,q,d,n)

def xcc(s1,s2,q=None,d=None,n=None):
"""Evaluates the complex cross-correlation between two
equally periodic q-ary sequences with increasing delays
within the period. Input length must correspond to a full
period.
s: q-ary periodic sequence
q: order of finite field
d: maximum denominator allowed in fractions
n: number of decimal places in floating point numbers"""

def cc(s1,s2):
"""Evaluates the complex correlation between two equally
periodic numerical sequences.
s1,s2: q-ary periodic sequences"""
assert type(s1) == type(s2)
if type(s1) is list:
s3 = [[(j-i)%q for i,j in zip(u,v)] for u,v in zip(s1,s2)]
s4 = [reduce(lambda x,y:(x*q)+y,e) for e in s3]
z = sum(rect(1,2*pi*i/q) for i in s4)/len(s1)
elif type(s1) is int:
z = sum(rect(1,2*pi*(j-i)/q) for i,j in zip(s1,s2))/len(s1)
else:
raise TypeError
zr,zi = round(z.real,n),round(z.imag,n)
if abs(zi%1)<10**-n:
if abs(zr-round(zr))<10**-n:
return int(zr)
elif Fraction(z.real).limit_denominator().denominator<=d:
return Fraction(z.real).limit_denominator()
else:
return zr
else:
return complex(zr,zi)

q = 2 if q is None else q
d = 30 if d is None else d
n = 3 if n is None else n
assert len(s1) == len(s2)
return [cc(s1,s2[i:]+s2[:i]) for i in range(len(s1))]

def LFSR(P,S,M,N,K):
"""Outputs K-ary sequence with N elements. Each element is
derived from M successive values of the LFSR sequence
generated by polynomial P and initial state S. Polynomial
P is represented by a list of coefficients in decreasing
power order."""
def LFSR2():
"""Generates linear K-ary sequence according to polynomial
P and initial state S. If P is primitive, sequence length
is exactly one period."""
seq,st = [S[-1]],S
for j in range(K**len(S)-2):
st0 = sum([i*j for i,j in zip(st,P[1:])])%K
st = [st0]+st[:-1]
seq += [st[-1]]
return seq

assert len(P) > 1 and len(P)-1 == len(S)
s = LFSR2()
L = len(s)
assert M <= L
return [s[i%L] if M == 1 else (s[i%L:]+s[:i%L])[:M] for i in range(N)]

if __name__ == "__main__":

# Binary sequence over GF(2) generated by the LFSR
# defined by non primitive polynomial x⁴+x³+x+1.
# This is not a m-sequence since its period is 6
# (<15 = 2⁴-1)
s01 = LFSR([1,1,0,1,1],[0,0,0,1],1,15,2)
print("s01 =",s01,"\n")

s01 = [1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0]

    # Sequence over GF(2⁴) derived from sequence "s01".
# The polynomial elements were also mapped to integers
# in Z16, in order to show the period.
s04 = LFSR([1,1,0,1,1],[0,0,0,1],4,15,2)
print("s04 =",s04,"\n")
print("s04 =",flatList(s04,2),"\n")

s04 = [[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1],
[1, 1, 1, 0], [1, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1],
[0, 0, 1, 1], [0, 1, 1, 1], [1, 1, 1, 0], [1, 1, 0, 0],
[1, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0]]

s04 = [8, 1, 3, 7, 14, 12, 8, 1, 3, 7, 14, 12, 9, 2, 4]

    # m-sequence over GF(2) generated by the LFSR defined
# by the primitive polynomial x⁴+x+1. Its period is
# equal to 2⁴-1=15
s11 = LFSR([1,1,0,0,1],[0,0,0,1],1,15,2)
print("s11 =",s11,"\n")

s11 = [1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0]

    # Autocorrelation of m-sequence "s11". This function
# is two-valued and has the same period as sequence
# "s11"
printListOfNumbers("ac(s11) =",xac(s11),"\n")

ac(s11) = [1, -1/15, -1/15, -1/15, -1/15, -1/15, -1/15, -1/15,
-1/15, -1/15, -1/15, -1/15, -1/15, -1/15, -1/15]

    # Sequence over GF(2²) derived from m-sequence "s11"
s12 = LFSR([1,0,0,1,1],[0,0,0,1],2,15,2)
print("s12 =",s12,"\n")

s12 = [[1, 0], [0, 0], [0, 0], [0, 1], [1, 0], [0, 0], [0, 1],
[1, 1], [1, 0], [0, 1], [1, 0], [0, 1], [1, 1], [1, 1], [1, 1]]


# Autocorrelation of sequence "s12"
printListOfNumbers("ac(s12) =",xac(s12,4),"\n")

ac(s12) = [1, 7/15, 7/15, 7/15, 7/15, 7/15, 7/15, 7/15, 7/15,
7/15, 7/15, 7/15, 7/15, 7/15, 7/15]

    # Sequence over GF(2³) derived from m-sequence "s11"
s13 = LFSR([1,0,0,1,1],[0,0,0,1],3,15,2)
print("s13 =",s13,"\n")

s13 = [[1, 0, 0], [0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0],
[0, 0, 1], [0, 1, 1], [1, 1, 0], [1, 0, 1], [0, 1, 0],
[1, 0, 1], [0, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 0]]

    # Autocorrelation of sequence "s13"
printListOfNumbers("ac(s13) =",xac(s13,8,d=1000),"\n")

ac(s13) = [1, 0.844, 0.844, 0.844, 0.844, 0.844, 0.844, 0.844,
0.844, 0.844, 0.844, 0.844, 0.844, 0.844, 0.844]

    # Sequence over GF(2⁴) derived from the m-sequence "s11"
s14 = LFSR([1,0,0,1,1],[0,0,0,1],4,15,2)
print("s14 =",s14,"\n")

s14 = [[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0],
[1, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 0], [1, 1, 0, 1],
[1, 0, 1, 0], [0, 1, 0, 1], [1, 0, 1, 1], [0, 1, 1, 1],
[1, 1, 1, 1], [1, 1, 1, 0], [1, 1, 0, 0]]

    # Autocorrelation of sequence "s14"
printListOfNumbers("ac(s14) =",xac(s14,16,d=1000),"\n")

ac(s14) = [1, 0.959, 0.959, 0.959, 0.959, 0.959, 0.959, 0.959,
0.959, 0.959, 0.959, 0.959, 0.959, 0.959, 0.959]

    # Binary sequence over GF(2) generated by the LFSR
# defined by the primitive polynomial (x⁴+x³+1).
# This is also a m-sequence with period equal to
# 15 = 2⁴-1
s21 = LFSR([1,0,0,1,1],[0,0,0,1],1,15,2)
print("s21 =",s21,"\n")

s21 = [1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1]

    # Autocorrelation of sequence "s21"
printListOfNumbers("ac(s21) =",xac(s21),"\n")

ac(s21) = [1, -1/15, -1/15, -1/15, -1/15, -1/15, -1/15,
-1/15, -1/15, -1/15, -1/15, -1/15, -1/15, -1/15, -1/15]

    # Cross-correlation between m-sequences "s11" and "s21".
# This function is four-valued and has the same period
# as sequences "s11" and "s21"
printListOfNumbers("cc(s11,s21) =",xcc(s11,s21),"\n")

cc(s11,s21) = [-1/15, 1/5, -1/15, 7/15, 1/5, -1/3, -1/15,
1/5, 7/15, -1/3, 1/5, -1/3, -1/3, -1/15, -1/15]

    # m-sequence over GF(3) generated by the LFSR defined
# by the primitive polynomial x²+2x+1. Its period is
# equal to 3²-1=8
s31 = LFSR([1,2,1],[1,0],1,8,3)
print("s31 =",s31,"\n")

s31 = [0, 1, 2, 2, 0, 2, 1, 1]

    # Autocorrelation of sequence "s31"
printListOfNumbers("ac(s31) =",xac(s31,3),"\n")

ac(s31) = [1, -1/8, -1/8, -1/8, -1/8, -1/8, -1/8, -1/8]

    # Sequence over GF(3²) derived from m-sequence "s31"
s32 = LFSR([1,2,1],[1,0],2,8,3)
print("s32 =",s32,"\n")

s32 = [[0, 1], [1, 2], [2, 2], [2, 0], [0, 2], [2, 1], [1, 1], [1, 0]]

    # Autocorrelation of sequence "s32"
printListOfNumbers("ac(s32) =",xac(s32,3),"\n")

ac(s32) = [1, -1/8, -1/8, -1/8, -1/8, -1/8, -1/8, -1/8]

    # Sequence over GF(3³) derived from m-sequence "s31"
s33 = LFSR([1,2,1],[1,0],3,8,3)
print("s33 =",s33,"\n")

s33 = [[0, 1, 2], [1, 2, 2], [2, 2, 0], [2, 0, 2],
[0, 2, 1], [2, 1, 1], [1, 1, 0], [1, 0, 1]]

    # Autocorrelation of sequence "s33"
printListOfNumbers("ac(s33) =",xac(s33,3),"\n")

ac(s33) = [1, -1/8, -1/8, -1/8, -1/8, -1/8, -1/8, -1/8]

    # m-sequence over GF(3) generated by the LFSR defined
# by the primitive polynomial x³+x²+2. Its period is
# equal to 3³-1=26
s41 = LFSR([1,1,0,2],[1,0,0],1,26,3)
print("s41 =",s41,"\n")

s41 = [0, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 0, 1, 0, 0, 2, 2, 2, 0, 1,
2, 2, 1, 2, 0, 2]

    # Autocorrelation of m-sequence "s41". This function is
# two-valued and has the same period as sequence "s41"
printListOfNumbers("ac(s41) =",xac(s41,3),"\n")

ac(s41) = [1, -1/26, -1/26, -1/26, -1/26, -1/26, -1/26, -1/26, -1/26,
-1/26, -1/26, -1/26, -1/26, -1/26, -1/26, -1/26, -1/26, -1/26,
-1/26, -1/26, -1/26, -1/26, -1/26, -1/26, -1/26, -1/26]

    # Sequence over GF(3²) derived from m-sequence "s41"
s42 = LFSR([1,1,0,2],[1,0,0],2,26,3)
print("s42 =",s42,"\n")

s42 = [[0, 0], [0, 1], [1, 1], [1, 1], [1, 0], [0, 2],
[2, 1], [1, 1], [1, 2], [2, 1], [1, 0], [0, 1],
[1, 0], [0, 0], [0, 2], [2, 2], [2, 2], [2, 0],
[0, 1], [1, 2], [2, 2], [2, 1], [1, 2], [2, 0],
[0, 2], [2, 0]]

    # Autocorrelation of sequence "s42"
printListOfNumbers("ac(s42) =",xac(s42,9),"\n")

ac(s42) = [1, 0.701, 0.701, 0.701, 0.701, 0.701, 0.701,
0.701, 0.701, 0.701, 0.701, 0.701, 0.701, 0.838,
0.701, 0.701, 0.701, 0.701, 0.701, 0.701, 0.701,
0.701, 0.701, 0.701, 0.701, 0.701]

    # Sequence over GF(3³) derived from m-sequence "s31"
s43 = LFSR([1,1,0,2],[1,0,0],3,26,3)
print("s43 =",s43,"\n")

s43 = [[0, 0, 1], [0, 1, 1], [1, 1, 1], [1, 1, 0],
[1, 0, 2], [0, 2, 1], [2, 1, 1], [1, 1, 2],
[1, 2, 1], [2, 1, 0], [1, 0, 1], [0, 1, 0],
[1, 0, 0], [0, 0, 2], [0, 2, 2], [2, 2, 2],
[2, 2, 0], [2, 0, 1], [0, 1, 2], [1, 2, 2],
[2, 2, 1], [2, 1, 2], [1, 2, 0], [2, 0, 2],
[0, 2, 0], [2, 0, 0]]

    # Autocorrelation of sequence "s43"
printListOfNumbers("ac(s43) =",xac(s43,27),"\n")

ac(s43) = [1, 0.963, 0.963, 0.963, 0.963, 0.963, 0.963,
0.963, 0.963, 0.963, 0.963, 0.963, 0.963, 0.981,
0.963, 0.963, 0.963, 0.963, 0.963, 0.963, 0.963,
0.963, 0.963, 0.963, 0.963, 0.963]

    # Sequence over Z20 with ideal autocorrelation function
# (Kronecker's delta)
s51 = [t**2%20 for t in range(10)]
print("s51 =",s51,"\n")

s51 = [0, 1, 4, 9, 16, 5, 16, 9, 4, 1]

    # Autocorrelation of sequence "s51"
printListOfNumbers("xac(s51) =",xac(s51,20),"\n")

xac(s51) = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

    # Sequence over Z7 with ideal autocorrelation function
# (Kronecker's delta)
s61 = [(t*(t+1)//2)%7 for t in range(7)]
print("s61 =",s61,"\n")

s61 = [0, 1, 3, 6, 3, 1, 0]

    # Autocorrelation of sequence "s61"
printListOfNumbers("xac(s61) =",xac(s61,7),"\n")

xac(s61) = [1, 0, 0, 0, 0, 0, 0]


# HMAC-SHA-256 implementation in Python 3

A hash-based message authentication code (HMAC) is an algorithm for generating a message authentication code (MAC), which can be used to verify both the integrity and the authentication of a given message. Although both constructs, HMAC and MAC, are based on a cryptographic hash function (such as SHA-1, Whirlpool or RIPEMD-160), the former requires a key (shared between the sender and the receiver of the message) while the latter doesn’t. The HMAC concept was proposed by Bellare, Canetti, and Krawczyk in 1996 and is described in RFC 2104.

As seen from its name, HMAC-SHA-256 uses as its engine the SHA-256 cryptographic hash function, which produces message digests of 256 bits in length. Like the other members of the SHA-2 family (and also MD-5 and SHA-1), SHA-256 is an iterative hash function (based on the Merkle–Damgård scheme) that works by breaking up the input message into blocks of a fixed size (512 bits for SHA-256) and iterating over them with a compression function.

#!/usr/bin/python3
#
# Author: Joao H de A Franco (jhafranco@acm.org)
#
# Description: HMAC-SHA256 implementation in Python 3
#
# Date: 2013-06-10
#
#          (CC BY-NC-SA 3.0)
#================================================================

from functools import reduce
from math import log,ceil

def intToList2(number,length):
"""Convert a number into a byte list
with specified length"""
return [(number >> i) & 0xff
for i in reversed(range(0,length*8,8))]

def intToList(number):
"""Converts an integer of any length into an integer list"""
L1 = log(number,256)
L2 = ceil(L1)
if L1 == L2:
L2 += 1
return [(number&(0xff<<8*i))>>8*i for i in reversed(range(L2))]

def listToInt(lst):
"""Convert a byte list into a number"""
return reduce(lambda x,y:(x<<8)+y,lst)

def bitList32ToList4(lst):
"""Convert a 32-bit list into a 4-byte list"""
def bitListToInt(lst):
return reduce(lambda x,y:(x<<1)+y,lst)

lst2 = []
for i in range(0,len(lst),8):
lst2.append(bitListToInt(lst[i:i+8]))
return list(*(4-len(lst2)))+lst2

def list4ToBitList32(lst):
"""Convert a 4-byte list into a 32-bit list"""
def intToBitList2(number,length):
"""Convert an integer into a bit list
with specified length"""
return [(number>>n) & 1
for n in reversed(range(length))]

lst2 = []
for e in lst:
lst2 += intToBitList2(e,8)
return list(*(32-len(lst2)))+lst2

"""Add up to five 32-bit numbers"""
p2,q2 = listToInt(p), listToInt(q)
if t is None:
if s is None:
if r is None:
else:
r2 = listToInt(r)
else:
r2,s2 = listToInt(r),listToInt(s)
else:
r2,s2,t2 = listToInt(r),listToInt(s),listToInt(t)

def xor(x,y,z=None):
"""Evaluate the XOR on two or three operands"""
if z is None:
return list(i^j for i,j in zip(x,y))
else:
return list(i^j^k for i,j,k in zip(x,y,z))

def sha256(m):
"""Return the SHA-256 digest of input"""
"""Pad message according to SHA-256 rules"""
def bitListToList(lst):
"""Convert a bit list into a byte list"""
lst2 = *((8-len(lst)%8)%8)+lst
return [reduce(lambda x,y:(x<<1)+y,lst2[i*8:i*8+8])
for i in range(len(lst2)//8)]

def intToBitList(number):
"""Convert an integer into a bit list"""
return list(map(int,list(bin(number)[2:])))

if type(m) is int:
m1 = intToBitList(m)
L = len(m1)
k = (447-L)%512
return bitListToList(m1++list(*k))+intToList2(L,8)
else:
m1 = m
if type(m) is str:
m1 = list(map(ord,m))
if not(type(m) is list):
raise TypeError
L = len(m1)*8
k = (447-L)%512
return m1+bitListToList(+list(*k))+intToList2(L,8)

def compress(m):
"""Evaluates SHA-256 compression function to input"""
def Ch(x,y,z):
return list([(i&j)^((i^0xff)&k) for i,j,k in zip(x,y,z)])

def Maj(x,y,z):
return list([(i&j)^(i&k)^(j&k) for i,j,k in zip(x,y,z)])

def rotRight(p,n):
"""Rotate 32-bit word right by n bits"""
p2 = list4ToBitList32(p)
return bitList32ToList4(p2[-n:]+p2[:-n])

def shiftRight(p,n):
"""Shift 32-bit right by n bits"""
p2 = list4ToBitList32(p)
return bitList32ToList4(list(bytes(n))+p2[:-n])

def Sigma0(p):
"""SHA-256 function"""
return xor(rotRight(p,2),rotRight(p,13),rotRight(p,22))

def Sigma1(p):
"""SHA-256 function"""
return xor(rotRight(p,6),rotRight(p,11),rotRight(p,25))

def sigma0(p):
"""SHA-256 function"""
return xor(rotRight(p,7),rotRight(p,18),shiftRight(p,3))

def sigma1(p):
"""SHA-256 function"""
return xor(rotRight(p,17),rotRight(p,19),shiftRight(p,10))

nonlocal H
[a,b,c,d,e,f,g,h] = H
K = [0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2]
W = [None]*64
for t in range(16):
W[t] = m[t*4:t*4+4]
for t in range(16,64):
for t in range(64):
h = g; g = f; f = e; e = add32(d,T1)
d = c; c = b; b = a; a = add32(T1,T2)
H = [add32(x,y) for x,y in zip([a,b,c,d,e,f,g,h],H)]

H0 = [0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19]
H = list(map(lambda x:intToList2(x,4),H0))
for i in range(0,len(mp),64):
compress(mp[i:i+64])
return listToInt([s2 for s1 in H for s2 in s1])

def hmac_sha256(k,m):
"""Return the HMAC-SHA-256 of the input
if type(k) is int:
k1 = intToList(k)
L = len(k1)
if L > 64:
K = intToList2(sha256(k),32)+list(*32)
else:
K = k1+list(*(64-L))
else:
k1 = list(map(ord,k))
L = len(k1)
if L > 64:
K = intToList(sha256(k1))
else:
K = k1+list(*(64-L))
if type(m) is int:
M = intToList(m)
else:
M = list(map(ord,m))
return sha256(arg1+intToList(sha256(arg2+M)))

if __name__ == '__main__':

# Wikipedia's test case #1

# Wikipedia's test case #2
assert hmac_sha256("key", "The quick brown fox jumps over the lazy dog") == \
0xf7bc83f430538424b13298e6aa6fb143ef4d59a14946175997479dbc2d1a3cd8

# RFC 4231 - Identifiers and Test Vectors for HMAC-SHA-224, HMAC-SHA-256,
# HMAC-SHA-384, and HMAC-SHA-512

# RFC 4231 Test case 1
Key1 = 0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
Data1 = 0x4869205468657265
HMAC1 = 0xb0344c61d8db38535ca8afceaf0bf12b881dc200c9833da726e9376c2e32cff7
assert hmac_sha256(Key1,Data1) == HMAC1

# RFC 4231 Test case 2
Key2 = 0x4a656665
Data2 = 0x7768617420646f2079612077616e7420666f72206e6f7468696e673f
HMAC2 = 0x5bdcc146bf60754e6a042426089575c75a003f089d2739839dec58b964ec3843
assert hmac_sha256(Key2,Data2) == HMAC2

# RFC 4231 Test case 3
Key3 = 0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Data3 = 0xdddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
HMAC3 = 0x773ea91e36800e46854db8ebd09181a72959098b3ef8c122d9635514ced565fe
assert hmac_sha256(Key3,Data3) == HMAC3

# RFC 4231 Test case 4
Key4 = 0x0102030405060708090a0b0c0d0e0f10111213141516171819
Data4 = 0xcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd
HMAC4 = 0x82558a389a443c0ea4cc819899f2083a85f0faa3e578f8077a2e3ff46729665b
assert hmac_sha256(Key4,Data4) == HMAC4

# RFC 4231 Test case 5
Key5 = 0x0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c
Data5 = 0x546573742057697468205472756e636174696f6e
HMAC5 = 0xa3b6167473100ee06e0c796c2955552b
assert hmac_sha256(Key5,Data5)>>128 == HMAC5

# RFC 4231 Test case 6
Key6 = 0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Data6 = 0x54657374205573696e67204c6172676572205468616e20426c6f636b2d53697a65204b6579202d2048617368204b6579204669727374
HMAC6 = 0x60e431591ee0b67f0d8a26aacbf5b77f8e0bc6213728c5140546040f0ee37f54
assert hmac_sha256(Key6,Data6) == HMAC6

# RFC 4231 Test case 7
Key7 = 0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Data7 = 0x5468697320697320612074657374207573696e672061206c6172676572207468616e20626c6f636b2d73697a65206b657920616e642061206c6172676572207468616e20626c6f636b2d73697a6520646174612e20546865206b6579206e6565647320746f20626520686173686564206265666f7265206265696e6720757365642062792074686520484d414320616c676f726974686d2e
HMAC7 = 0x9b09ffa71b942fcb27635fbcd5b0e944bfdc63644f0713938a7f51535c3a35e2
assert hmac_sha256(Key7,Data7) == HMAC7

print("Ok!")


# Validation of an AES-CFB implementation in Python 3

A symmetric block cipher such as AES (or Triple DES) operates on blocks of fixed size (128 bits for AES and 64 bits for TDES). It is possible, however, to convert a block cipher into a stream cipher using one of the three following modes: cipher feedback (CFB), output feedback (OFB), and counter (CTR). A stream cipher eliminates the need to pad a message to be an integral number of blocks and, for this reason, can operate in real time, making it the natural choice for encrypting streaming data (e.g. voice).

The Python code shown below implements the encryption and decryption operations for CFB-8 and CFB-128 modes. These functions rely on the “basic” AES mode (ECB) services provided by sundAES, an AES implementation in Python presented in a previous blog.

#!/usr/bin/python3

import sys
from functools import reduce
import sundAES

# Auxiliary functions

def xor(x,y):
"""Returns the xor between two lists"""
return bytes(i^j for i,j in zip(x,y))

def bytesToInt(b):
"""Converts a bytes string into an integer"""
return listToInt(list(b))

def listToInt(lst):
"""Convert a byte list into a number"""
return reduce(lambda x,y:(x<<8)+y,lst)

def intToList(number):
"""Converts an integer into an integer list"""
if number == 0:
return 
lst = []
while number:
lst += [number&0xff]
number >>= 8
return lst[::-1]

def intToBytes(number):
"""Converts an integer into a bytes list"""
return bytes(intToList(number))

def intToList2(number,length=None):
"""Converts an integer into an integer list with
16, 24 or 32 elements"""
lst = []
while number:
lst.append(number&0xff)
number >>= 8
L = len(lst)
if length:
pZero = length-L
assert pZero >= 0
else:
if L <= 16:
pZero = 16-L
elif L <= 24:
pZero = 24-L
elif L <= 32:
pZero = 32-L
else:
raise ValueError
return list(bytes(pZero)) + lst[::-1]

def intToBytes2(number,length=None):
"""Converts an integer into a bytes list with
16, 24 or 32 elements"""
return bytes(intToList2(number,length))

# Real crypto stuff starts here...

def encryptCFB8(keysize,key,iv,input):
"""Encrypts single bytes of input block (CFB8 mode)"""
inputBuffer = intToBytes2(iv)
if type(input) is int:
ptext = intToBytes(input)
else:
ptext = bytes(map(ord,input))
obj = sundAES.AES("MODE_ECB")
obj.setKey(keysize,key,iv)
ctext = bytes()
for i in range(0,len(ptext),1):
AESoutput = obj.encrypt(inputBuffer)
cbyte = bytes([AESoutput ^ ptext[i]])
inputBuffer = inputBuffer[1:] + cbyte
ctext += cbyte
if type(input) is int:
ctext = bytesToInt(ctext)
else:
ctext = list(ctext)
return ctext

def decryptCFB8(keysize,key,iv,input):
"""Decrypts single bytes of input block (CFB8 mode)"""
inputBuffer = intToBytes2(iv)
if type(input) is int:
ctext = intToBytes(input)
else:
ctext = bytes(map(ord,input))
obj = sundAES.AES("MODE_ECB")
obj.setKey(keysize,key,iv)
ptext = bytes()
for i in range(0,len(ctext),1):
AESoutput = obj.encrypt(inputBuffer)
pbyte = bytes([AESoutput ^ ctext[i]])
inputBuffer = inputBuffer[1:] + bytes(ctext[i])
ptext += pbyte
if type(input) is int:
ptext = bytesToInt(ptext)
else:
ptext = "".join(chr(e) for e in ptext)
return ptext

# ... and goes on here

def encryptCFB128(keysize,key,iv,input):
"""Encrypts a 16-byte input block (CFB128 mode)"""
inputBuffer = intToBytes2(iv)
if type(input) is int:
ptext = intToList2(input)
else:
ptext = list(map(ord,input))
L = 16-len(ptext)
ptext = list(bytes(L)) + ptext
obj = sundAES.AES("MODE_ECB")
obj.setKey(keysize,key,iv)
ctext = bytes()
L3 = len(ptext)
for i in range(0,L3,16):
AESoutput = obj.encrypt(inputBuffer)
inputBuffer = xor(AESoutput,ptext[i:min(L3,i+16)])
ctext += bytes(inputBuffer)
if type(input) is int:
ctext = bytesToInt(ctext)
else:
ctext = list(ctext)
return ctext

def decryptCFB128(keysize,key,iv,input):
"""Decrypts a 16-byte input block (CFB128 mode)"""
inputBuffer = intToBytes2(iv)
if type(input) is int:
ctext = intToList2(input)
else:
ctext = list(map(ord,input))
L = 16-len(ctext)
ctext = list(bytes(L)) + ctext
obj = sundAES.AES("MODE_ECB")
obj.setKey(keysize,key,iv)
ptext = bytes()
L3 = len(ctext)
for i in range(0,L3,16):
AESoutput = obj.encrypt(inputBuffer)
inputBuffer = ctext[i:min(L3,i+16)]
ptextBlock = xor(AESoutput,inputBuffer)
ptext += ptextBlock
if type(input) is int:
ptext = bytesToInt(ptext)
else:
ptext = "".join(chr(e) for e in ptext)
return ptext


CFB8 encrypts (or decrypts) a single byte while CFB128 operates on a 16-byte block. Like the other stream modes (OFB and CTR), and differently from Electronic codebook (ECB) and Cipher block chaining (CBC) “block modes”, CFB dispenses padding and uses only the ECB encryption operation. This latter feature is very convenient for AES, since AES encryption and decryption operations are somewhat different.

The US National Institute of Standards and Technology (NIST) defines four types of Known Answer Test (KAT): GFSbox, KeySbox, Variable Key and Variable Text. The contents of file CFB8GFSbox128.rsp (see below) describe the GFSbox encryption and decryption tests cases for CFB8 using 128-bits AES keys.

# CAVS 11.1
# Config info for aes_values
# AESVS GFSbox test data for CFB8
# State : Encrypt and Decrypt
# Key Length : 128
# Generated on Fri Apr 22 15:11:46 2011

[ENCRYPT]

COUNT = 0
KEY = 00000000000000000000000000000000
IV = f34481ec3cc627bacd5dc3fb08f273e6
PLAINTEXT = 00
CIPHERTEXT = 03

... 5 test cases omitted

[DECRYPT]

COUNT = 0
KEY = 00000000000000000000000000000000
IV = f34481ec3cc627bacd5dc3fb08f273e6
CIPHERTEXT = 03
PLAINTEXT = 00

... 5 test cases omitted


As a second example, the contents of file CFB128VarKey192.rsp file that follow describe the Variable Key encryption and decryption tests cases for the CFB128 mode using 192-bits AES keys.

# CAVS 11.1
# Config info for aes_values
# AESVS VarKey test data for CFB128
# State : Encrypt and Decrypt
# Key Length : 192
# Generated on Fri Apr 22 15:11:55 2011

[ENCRYPT]

COUNT = 0
KEY = 800000000000000000000000000000000000000000000000
IV = 00000000000000000000000000000000
PLAINTEXT = 00000000000000000000000000000000
CIPHERTEXT = de885dc87f5a92594082d02cc1e1b42c

... 190 test cases omitted

[DECRYPT]

COUNT = 0
KEY = 800000000000000000000000000000000000000000000000
IV = 00000000000000000000000000000000
CIPHERTEXT = de885dc87f5a92594082d02cc1e1b42c
PLAINTEXT = 00000000000000000000000000000000

... 190 test cases omitted


Next is presented the Python program that extracts data from the files contained in the KAT_AES directory which names start with “CFB8” or “CFB128”, then builds the test cases and finally executes them.

#!/usr/bin/python3
#
# Author: Joao H de A Franco (jhafranco@acm.org)
#
# Description: Validation of AES-CFB8 and AES-CFB128
#              implementations in Python
#
# Date: 2013-06-05
#
#          (CC BY-NC-SA 3.0)
#===========================================================

import os,sys,re
from functools import reduce
from glob import glob
import AES_CFB

# Global counters
noFilesTested = noFilesSkipped = 0
counterOK = counterNOK = 0

class AEStester:
def buildTestCases(self,filename):
"""Build test cases described in a given file"""
global noFilesTested,noFilesSkipped

self.basename = os.path.basename(filename)
if self.basename.startswith('CFB'):
if self.basename.startswith('CFB8'):
self.mode = "MODE_CFB8"
result = re.search("CFB8(\D{6,})\d{3}",self.basename)
self.typeTest = result.group(1)
elif self.basename.startswith('CFB128'):
self.mode = "MODE_CFB128"
result = re.search("CFB128(\D{6,})\d{3}",self.basename)
self.typeTest = result.group(1)
else: # CFB1 files not considered
noFilesSkipped += 1
return
else: # not CFB files
noFilesSkipped += 1
return

noFilesTested += 1
digits = re.search("(\d{3})\.",self.basename)
self.keysize = 'SIZE_' + digits.group(1)
self.iv = None
for line in open(filename):
line = line.strip()
if (line == "") or line.startswith('#'):
continue
elif line == '[ENCRYPT]':
self.operation = 'encrypt'
continue
elif line == '[DECRYPT]':
self.operation = 'decrypt'
continue
param,_,value = line.split(' ',2)
if param == "COUNT":
self.count = int(value)
continue
else:
self.__setattr__(param.lower(),int(value,16))
if (self.operation == 'encrypt') and (param == "CIPHERTEXT") or \
(self.operation == 'decrypt' and param == "PLAINTEXT"):
self.runTestCase()

def runTestCase(self):
"""Execute test case and report result"""
global counterOK,counterNOK

def printTestCase(result):
print("Type={0:s} Mode={1:s} Keysize={2:s} Function={3:s} Count={4:03d} {5:s}"\
.format(self.typeTest,self.mode[5:],\
self.keysize[5:],self.operation.upper(),\
self.count,result))
if self.operation == 'encrypt':
if self.mode == "MODE_CFB8":
CIPHERTEXT = AES_CFB5.encryptCFB8(self.keysize,self.key,self.iv,self.plaintext)
else:
CIPHERTEXT = AES_CFB5.encryptCFB128(self.keysize,self.key,self.iv,self.plaintext)
try:
assert self.ciphertext == CIPHERTEXT
counterOK += 1
printTestCase("OK")
except AssertionError:
counterNOK +=1
print(self.basename,end=" ")
printTestCase("failed")
print("Expected ciphertext={0:0x}".format(self.ciphertext))
print("Returned ciphertext={0:0x}".format(CIPHERTEXT))
else:
if self.mode == "MODE_CFB8":
PLAINTEXT = AES_CFB5.decryptCFB8(self.keysize,self.key,self.iv,self.ciphertext)
else:
PLAINTEXT = AES_CFB5.decryptCFB128(self.keysize,self.key,self.iv,self.ciphertext)
try:
assert self.plaintext == PLAINTEXT
counterOK += 1
printTestCase("OK")
except AssertionError:
counterNOK +=1
print(self.basename,end=" ")
printTestCase("failed")
print("Expected plaintext={0:0x}".format(self.plaintext))
print("Returned plaintext={0:0x}".format(PLAINTEXT))

if __name__ == '__main__':
path = os.path.dirname(__file__)
files = sys.argv[1:]
if not files:
files = glob(os.path.join(path,'KAT_AES','*.rsp'))
files.sort()
for file in files:
AEStester().buildTestCases(file)
print("Files tested={0:d}".format(noFilesTested))
print("Files skipped={0:d}".format(noFilesSkipped))
print("Test cases OK={0:d}".format(counterOK))
print("Test cases NOK={0:d}".format(counterNOK))


This program, when executed without arguments, will generate the following report:

Type=GFSbox Mode=CFB128 Keysize=128 Function=ENCRYPT Count=000 OK
Type=GFSbox Mode=CFB128 Keysize=128 Function=ENCRYPT Count=001 OK
Type=GFSbox Mode=CFB128 Keysize=128 Function=ENCRYPT Count=002 OK
Type=GFSbox Mode=CFB128 Keysize=128 Function=ENCRYPT Count=003 OK
Type=GFSbox Mode=CFB128 Keysize=128 Function=ENCRYPT Count=004 OK

... 4,146 test cases omitted

Type=VarTxt Mode=CFB8 Keysize=256 Function=DECRYPT Count=123 OK
Type=VarTxt Mode=CFB8 Keysize=256 Function=DECRYPT Count=124 OK
Type=VarTxt Mode=CFB8 Keysize=256 Function=DECRYPT Count=125 OK
Type=VarTxt Mode=CFB8 Keysize=256 Function=DECRYPT Count=126 OK
Type=VarTxt Mode=CFB8 Keysize=256 Function=DECRYPT Count=127 OK
Files tested=24
Files skipped=48
Test cases OK=4156
Test cases NOK=0


# Validation of an AES implementation in Python 3

The Cryptographic Algorithm Validation Program (CAVP) defines validation testing for cryptographic algorithms approved by the US National Institute of Standards and Technology (NIST). All of the tests under CAVP, established by NIST and its Canadian counterpart (CSEC) in 1995, are handled by accredited third-party laboratories.

To assist prospective vendors in checking their implementations, NIST provides electronic versions of the vectors for the Known Answer Test (KAT) for the three NIST-approved symmetric cryptographic algorithms: AES, Triple-DES, and Skipjack. Also available are sample values for the Monte Carlo (MCT) test and the Multiblock Message (MMT) test for the same algorithms, thus completing the set of tests a cryptographic implementation (dubbed “Implementation Under Test”) will face during a formal validation. A detailed account of the procedures involved in validating AES implementations can be found in the NIST document The Advanced Encryption Standard Algorithm Validation Suite (AESAVS).

The NIST KAT validation suite for AES contains 72 files describing test vectors for different AES modes of operation: ECB (Electronic Codebook), CBC (Cipher Block Chaining), CFB (Cipher Feedback) and OFB (Output Feedback). Besides this partition, there are also separated tests for AES encryption and decryption, exemplified by the abridged contents of the file ECBKeySbox128.rsp (see below).

# CAVS 11.1
# Config info for aes_values
# AESVS KeySbox test data for ECB
# State : Encrypt and Decrypt
# Key Length : 128
# Generated on Fri Apr 22 15:11:26 2011

[ENCRYPT]

COUNT = 0
KEY = 10a58869d74be5a374cf867cfb473859
PLAINTEXT = 00000000000000000000000000000000
CIPHERTEXT = 6d251e6944b051e04eaa6fb4dbf78465

COUNT = 1
KEY = caea65cdbb75e9169ecd22ebe6e54675
PLAINTEXT = 00000000000000000000000000000000
CIPHERTEXT = 6e29201190152df4ee058139def610bb

... (18 test cases omitted)

[DECRYPT]

COUNT = 0
KEY = 10a58869d74be5a374cf867cfb473859
CIPHERTEXT = 6d251e6944b051e04eaa6fb4dbf78465
PLAINTEXT = 00000000000000000000000000000000

COUNT = 1
KEY = caea65cdbb75e9169ecd22ebe6e54675
CIPHERTEXT = 6e29201190152df4ee058139def610bb
PLAINTEXT = 00000000000000000000000000000000

... (18 test cases omitted)


These vectors can be used to informally verify the correctness of an AES implementation, such as the one presented below, which successfully passed all 4,156 KAT tests involving ECB and CBC modes. This Python code differs from the one already presented in a previous blog only with respect to the input/output types accepted: if the input plaintext (ciphertext) is of integer type, so will be the correspondent ciphertext (plaintext) output. This feature simplifies validation testing, since the integer plaintexts and ciphertexts usually employed in those scenarios can be deal with directly without any type conversion.

#!/usr/bin/python3
#
# Author: Joao H de A Franco (jhafranco@acm.org)
#
# Description: AES implementation in Python 3
#              (sundAES)
#
# Date: 2013-06-02 (version 1.1)
#       2012-01-16 (version 1.0)
#
#          (CC BY-NC-SA 3.0)
#===========================================================
import sys
from itertools import repeat
from functools import reduce
from copy import copy

__all__ = ["setKey","encrypt","decrypt"]

def memoize(func):
"""Memoization function"""
memo = {}
def helper(x):
if x not in memo:
memo[x] = func(x)
return memo[x]
return helper

def mult(p1,p2):
"""Multiply two polynomials in GF(2^8)/x^8+x^4+x^3+x+1"""
p = 0
while p2:
if p2&0x01:
p ^= p1
p1 <<= 1
if p1&0x100:
p1 ^= 0x1b
p2 >>= 1
return p&0xff

# Auxiliary one-parameter functions defined for memoization
# (to speed up multiplication in GF(2^8))

@memoize
def x2(y):
"""Multiplication by 2"""
return mult(2,y)

@memoize
def x3(y):
"""Multiplication by 3"""
return mult(3,y)

@memoize
def x9(y):
"""Multiplication by 9"""
return mult(9,y)

@memoize
def x11(y):
"""Multiplication by 11"""
return mult(11,y)

@memoize
def x13(y):
"""Multiplication by 13"""
return mult(13,y)

@memoize
def x14(y):
"""Multiplication by 14"""
return mult(14,y)

class AES:
"""Class definition for AES objects"""
keySizeTable = {"SIZE_128":16,
"SIZE_192":24,
"SIZE_256":32}
wordSizeTable = {"SIZE_128":44,
"SIZE_192":52,
"SIZE_256":60}
numberOfRoundsTable = {"SIZE_128":10,
"SIZE_192":12,
"SIZE_256":14}
cipherModeTable = {"MODE_ECB":1,
"MODE_CBC":2}
# S-Box
sBox = (0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,
0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,
0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,
0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,
0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,
0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,
0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,
0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,
0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,
0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,
0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,
0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,
0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,
0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,
0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,
0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,
0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,
0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,
0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,
0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,
0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,
0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,
0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,
0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,
0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,
0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,
0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,
0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,
0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,
0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,
0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16)
# Inverse S-Box
invSBox = (0x52,0x09,0x6a,0xd5,0x30,0x36,0xa5,0x38,
0xbf,0x40,0xa3,0x9e,0x81,0xf3,0xd7,0xfb,
0x7c,0xe3,0x39,0x82,0x9b,0x2f,0xff,0x87,
0x34,0x8e,0x43,0x44,0xc4,0xde,0xe9,0xcb,
0x54,0x7b,0x94,0x32,0xa6,0xc2,0x23,0x3d,
0xee,0x4c,0x95,0x0b,0x42,0xfa,0xc3,0x4e,
0x08,0x2e,0xa1,0x66,0x28,0xd9,0x24,0xb2,
0x76,0x5b,0xa2,0x49,0x6d,0x8b,0xd1,0x25,
0x72,0xf8,0xf6,0x64,0x86,0x68,0x98,0x16,
0xd4,0xa4,0x5c,0xcc,0x5d,0x65,0xb6,0x92,
0x6c,0x70,0x48,0x50,0xfd,0xed,0xb9,0xda,
0x5e,0x15,0x46,0x57,0xa7,0x8d,0x9d,0x84,
0x90,0xd8,0xab,0x00,0x8c,0xbc,0xd3,0x0a,
0xf7,0xe4,0x58,0x05,0xb8,0xb3,0x45,0x06,
0xd0,0x2c,0x1e,0x8f,0xca,0x3f,0x0f,0x02,
0xc1,0xaf,0xbd,0x03,0x01,0x13,0x8a,0x6b,
0x3a,0x91,0x11,0x41,0x4f,0x67,0xdc,0xea,
0x97,0xf2,0xcf,0xce,0xf0,0xb4,0xe6,0x73,
0xe2,0xf9,0x37,0xe8,0x1c,0x75,0xdf,0x6e,
0x47,0xf1,0x1a,0x71,0x1d,0x29,0xc5,0x89,
0x6f,0xb7,0x62,0x0e,0xaa,0x18,0xbe,0x1b,
0xfc,0x56,0x3e,0x4b,0xc6,0xd2,0x79,0x20,
0x9a,0xdb,0xc0,0xfe,0x78,0xcd,0x5a,0xf4,
0x1f,0xdd,0xa8,0x33,0x88,0x07,0xc7,0x31,
0xb1,0x12,0x10,0x59,0x27,0x80,0xec,0x5f,
0x60,0x51,0x7f,0xa9,0x19,0xb5,0x4a,0x0d,
0x2d,0xe5,0x7a,0x9f,0x93,0xc9,0x9c,0xef,
0xa0,0xe0,0x3b,0x4d,0xae,0x2a,0xf5,0xb0,
0xc8,0xeb,0xbb,0x3c,0x83,0x53,0x99,0x61,
0x17,0x2b,0x04,0x7e,0xba,0x77,0xd6,0x26,
0xe1,0x69,0x14,0x63,0x55,0x21,0x0c,0x7d)

# Instance variables
wordSize = None
w = [None]*60 # Round subkeys list
keyDefined = None # Key definition flag
numberOfRounds = None
cipherMode = None
ivEncrypt = None # Initialization
ivDecrypt = None #  vectors

"""Create a new instance of an AES object"""
try:
assert mode in AES.cipherModeTable
except AssertionError:
print("Cipher mode not supported:",mode)
sys.exit("ValueError")
self.cipherMode = mode
try:
except AssertionError:
sys.exit(ValueError)
self.keyDefined = False

def intToList(self,number):
"""Convert an 16-byte number into a 16-element list"""
return [(number>>i)&0xff for i in reversed(range(0,128,8))]

def intToList2(self,number):
"""Converts an integer into one (or more) 16-element list"""
lst = []
while number:
lst.append(number&0xff)
number >>= 8
m = len(lst)%16
if m == 0 and len(lst) != 0:
return lst[::-1]
else:
return list(bytes(16-m)) + lst[::-1]

def listToInt(self,lst):
"""Convert a list into a number"""
return reduce(lambda x,y:(x<<8)+y,lst)

def wordToState(self,wordList):
"""Convert list of 4 words into a 16-element state list"""
return [(wordList[i]>>j)&0xff
for j in reversed(range(0,32,8)) for i in range(4)]

def listToState(self,list):
"""Convert a 16-element list into a 16-element state list"""
return [list[i+j] for j in range(4) for i in range(0,16,4)]

stateToList = listToState # this function is an involution

def subBytes(self,state):
"""SubBytes transformation"""
return [AES.sBox[e] for e in state]

def invSubBytes(self,state):
"""Inverse SubBytes transformation"""
return [AES.invSBox[e] for e in state]

def shiftRows(self,s):
"""ShiftRows transformation"""
return s[:4]+s[5:8]+s[4:5]+s[10:12]+s[8:10]+s[15:]+s[12:15]

def invShiftRows(self,s):
"""Inverse ShiftRows transformation"""
return s[:4]+s[7:8]+s[4:7]+s[10:12]+s[8:10]+s[13:]+s[12:13]

def mixColumns(self,s):
"""MixColumns transformation"""
return [x2(s[i])^x3(s[i+4])^   s[i+8] ^   s[i+12]  for i in range(4)]+ \
[   s[i] ^x2(s[i+4])^x3(s[i+8])^   s[i+12]  for i in range(4)]+ \
[   s[i] ^   s[i+4] ^x2(s[i+8])^x3(s[i+12]) for i in range(4)]+ \
[x3(s[i])^   s[i+4] ^   s[i+8] ^x2(s[i+12]) for i in range(4)]

def invMixColumns(self,s):
"""Inverse MixColumns transformation"""
return [x14(s[i])^x11(s[i+4])^x13(s[i+8])^ x9(s[i+12]) for i in range(4)]+ \
[ x9(s[i])^x14(s[i+4])^x11(s[i+8])^x13(s[i+12]) for i in range(4)]+ \
[x13(s[i])^ x9(s[i+4])^x14(s[i+8])^x11(s[i+12]) for i in range(4)]+ \
[x11(s[i])^x13(s[i+4])^ x9(s[i+8])^x14(s[i+12]) for i in range(4)]

return [i^j for i,j in zip(subkey,state)]

def rotWord(self,number):
"""Rotate subkey left"""
return (((number&0xff000000)>>24) +
((number&0xff0000)<<8) +
((number&0xff00)<<8) +
((number&0xff)<<8))

def subWord(self,key):
"""Substitute subkeys bytes using S-box"""
return ((AES.sBox[(key>>24)&0xff]<<24) +
(AES.sBox[(key>>16)&0xff]<<16) +
(AES.sBox[(key>>8)&0xff]<<8) +
AES.sBox[key&0xff])

def setKey(self,keySize,key,iv = None):
"""KeyExpansion transformation"""
rcon = (0x00,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x1B,0x36)
try:
assert keySize in AES.keySizeTable
except AssertionError:
print("Key size identifier not valid")
sys.exit("ValueError")
try:
assert isinstance(key,int)
except AssertionError:
print("Invalid key")
sys.exit("ValueError")
klen = len("{:02x}".format(key))//2
try:
assert klen <= AES.keySizeTable[keySize]
except AssertionError:
print("Key size mismatch")
sys.exit("ValueError")
try:
assert ((self.cipherMode == "MODE_CBC" and isinstance(iv,int)) or
self.cipherMode == "MODE_ECB")
except AssertionError:
print("IV is mandatory for CBC mode")
sys.exit(ValueError)

if self.cipherMode == "MODE_CBC":
temp = self.intToList(iv)
self.ivEncrypt = copy(temp)
self.ivDecrypt = copy(temp)
nr = AES.numberOfRoundsTable[keySize]
self.numberOfRounds = nr
self.wordSize = AES.wordSizeTable[keySize]
if nr == 10:
nk = 4
keyList = self.intToList(key)
elif nr == 12:
nk = 6
keyList =  self.intToList(key>>64) + \
(self.intToList(key&int("ff"*32,16)))[8:]
else:
nk = 8
keyList =  self.intToList(key>>128) + \
self.intToList(key&int("ff"*64,16))
for index in range(nk):
self.w[index] =  (keyList[4*index]<<24) + \
(keyList[4*index+1]<<16) + \
(keyList[4*index+2]<<8) +\
keyList[4*index+3]
for index in range(nk,self.wordSize):
temp = self.w[index - 1]
if index % nk == 0:
temp = (self.subWord(self.rotWord(temp)) ^
rcon[index//nk]<<24)
elif self.numberOfRounds == 14 and index%nk == 4:
temp = self.subWord(temp)
self.w[index] = self.w[index-nk]^temp
self.keyDefined = True
return

def getKey(self,operation):
"""Return next round subkey for encryption or decryption"""
if operation == "encryption":
for i in range(0,self.wordSize,4):
yield self.wordToState(self.w[i:i+4])
else: # operation = "decryption":
for i in reversed(range(0,self.wordSize,4)):
yield self.wordToState(self.w[i:i+4])

def encryptBlock(self,plaintextBlock):
"""Encrypt a 16-byte block with key already defined"""
key = self.getKey("encryption")
state = self.listToState(plaintextBlock)
for _ in repeat(None,self.numberOfRounds - 1):
state = self.subBytes(state)
state = self.shiftRows(state)
state = self.mixColumns(state)
state = self.subBytes(state)
state = self.shiftRows(state)
return self.stateToList(state)

def decryptBlock(self,ciphertextBlock):
"""Decrypt a 16-byte block with key already defined"""
key = self.getKey("decryption")
state = self.listToState(ciphertextBlock)
for _ in repeat(None,self.numberOfRounds - 1):
state = self.invShiftRows(state)
state = self.invSubBytes(state)
state = self.invMixColumns(state)
state = self.invShiftRows(state)
state = self.invSubBytes(state)
return self.stateToList(state)

if type(data) is bytes:
else:

"""Remove PKCS7 padding (if present) from plaintext"""
return "".join(chr(e) for e in byteList[:-byteList[-1]])
else:
return "".join(chr(e) for e in byteList)

def encrypt(self,input):
"""Encrypt plaintext passed as a string or as an integer"""
try:
assert self.keyDefined
except AssertionError:
print("Key not defined")
sys.exit("ValueError")

if type(input) is int:
inList = self.intToList2(input)
else:
outList = []
if self.cipherMode == "MODE_CBC":
outBlock = self.ivEncrypt
for i in range(0,len(inList),16):
auxList = self.xorLists(outBlock,inList[i:i+16])
outBlock = self.encryptBlock(auxList)
outList += outBlock
self.ivEncrypt = outBlock
else:
for i in range(0,len(inList),16):
outList += self.encryptBlock(inList[i:i+16])
if type(input) is int:
return self.listToInt(outList)
else:
return outList

def decrypt(self,input):
"""Decrypt ciphertext passed as a string or as an integer"""
try:
assert self.keyDefined
except AssertionError:
print("Key not defined")
sys.exit("ValueError")
if type(input) is int:
inList = self.intToList2(input)
else:
inList = input
outList = []
if self.cipherMode == "MODE_CBC":
oldInBlock = self.ivDecrypt
for i in range(0,len(inList),16):
newInBlock = inList[i:i+16]
auxList = self.decryptBlock(newInBlock)
outList += self.xorLists(oldInBlock,auxList)
oldInBlock = newInBlock
self.ivDecrypt = oldInBlock
else:
for i in range(0,len(inList),16):
outList += self.decryptBlock(inList[i:i+16])
if type(input) is int:
return self.listToInt(outList)
else:


The Python program below extracts data from the files contained in the KAT_AES directory, then builds the test cases and finally executes them. Only the files applicable to ECB and CBC operation modes (the modes supported by this AES implementation) are considered.

#!/usr/bin/python3
#
# Author: Joao H de A Franco (jhafranco@acm.org)
#
# Description: Validation of an AES implementation in Python
#
# Date: 2013-06-02
#
#          (CC BY-NC-SA 3.0)
#===========================================================

import os,sys,re
from functools import reduce
from glob import glob
import sundAES

# Global counters
noFilesTested = noFilesSkipped = 0
counterOK = counterNOK = 0

class AEStester:
""""""
def buildTestCases(self,filename):
"""Build test cases described in a given file"""
global noFilesTested,noFilesSkipped

self.basename = os.path.basename(filename)
if self.basename.startswith('ECB'):
self.mode = "MODE_ECB"
noFilesTested += 1
elif self.basename.startswith('CBC'):
self.mode = "MODE_CBC"
noFilesTested += 1
else:
noFilesSkipped += 1
return

digits = re.search("\d{3}",self.basename)
self.keysize = 'SIZE_' + digits.group()
result = re.search("CFB\d*(\D{6,})\d{3}",self.basename)
if result != None:
self.typeTest = result.group(1)
self.typeTest = re.search("\w{3}(\D{6,})\d{3}",self.basename).group(1)
self.iv = None
for line in open(filename):
line = line.strip()
if (line == "") or line.startswith('#'):
continue
elif line == '[ENCRYPT]':
self.operation = 'encrypt'
continue
elif line == '[DECRYPT]':
self.operation = 'decrypt'
continue
param,_,value = line.split(' ',2)
if param == "COUNT":
self.count = int(value)
continue
else:
self.__setattr__(param.lower(),int(value,16))
if (self.operation == 'encrypt') and (param == "CIPHERTEXT") or \
(self.operation == 'decrypt' and param == "PLAINTEXT"):
self.runTestCase()

def runTestCase(self):
"""Execute test case and report result"""
global counterOK,counterNOK

def printTestCase(result):
print("Type={0:s} Mode={1:s} Keysize={2:s} Function={3:s} Count={4:03d} {5:s}"\
.format(self.typeTest,self.mode[5:],\
self.keysize[5:],self.operation.upper(),\
self.count,result))

obj = sundAES3.AES(self.mode)
obj.setKey(self.keysize,self.key,self.iv)
if self.operation == 'encrypt':
CIPHERTEXT = obj.encrypt(self.plaintext)
try:
assert self.ciphertext == CIPHERTEXT
counterOK += 1
printTestCase("OK")
except AssertionError:
counterNOK +=1
print(self.basename)
printTestCase("failed")
print("Expected ciphertext={0:0x}".format(self.ciphertext))
print("Returned ciphertext={0:0x}".format(CIPHERTEXT))
else:
PLAINTEXT = obj.decrypt(self.ciphertext)
try:
assert self.plaintext == PLAINTEXT
counterOK += 1
printTestCase("OK")
except AssertionError:
counterNOK +=1
print(self.basename)
printTestCase("failed")
print("Expected plaintext={0:0x}".format(self.plaintext))
print("Returned plaintext={0:0x}".format(PLAINTEXT))

# Main program
path = os.path.dirname(__file__)
files = sys.argv[1:]
if not files:
files = glob(os.path.join(path,'KAT_AES','*.rsp'))
files.sort()
for file in files:
AEStester().buildTestCases(file)
print("Files tested={0:d}".format(noFilesTested))
print("Files skipped={0:d}".format(noFilesSkipped))
print("Test cases OK={0:d}".format(counterOK))
print("Test cases NOK={0:d}".format(counterNOK))


Executed without arguments, this program will apply all ECB and CBC tests described in the files against the AES implementation, producing the following output:

Type=GFSbox Mode=CBC Keysize=128 Function=ENCRYPT Count=000 OK
Type=GFSbox Mode=CBC Keysize=128 Function=ENCRYPT Count=001 OK
Type=GFSbox Mode=CBC Keysize=128 Function=ENCRYPT Count=002 OK
Type=GFSbox Mode=CBC Keysize=128 Function=ENCRYPT Count=003 OK
Type=GFSbox Mode=CBC Keysize=128 Function=ENCRYPT Count=004 OK

... (4,147 lines omitted)

Type=VarTxt Mode=ECB Keysize=256 Function=DECRYPT Count=124 OK
Type=VarTxt Mode=ECB Keysize=256 Function=DECRYPT Count=125 OK
Type=VarTxt Mode=ECB Keysize=256 Function=DECRYPT Count=126 OK
Type=VarTxt Mode=ECB Keysize=256 Function=DECRYPT Count=127 OK
Files tested=24
Files skipped=48
Test cases OK=4156
Test cases NOK=0


If, however, this program is run with one or more files in the KAT_AES directory as argument(s), it will instead build and execute the tests contained in the indicated file(s).

# AES-GCM implementation in Python 3

Galois/Counter Mode (GCM) is a mode of operation for symmetric key cryptographic block ciphers that provides authenticated encryption.

Proposed by David McGrew and John Viega in 2005, GCM is suited for high-speed secure computing and communication. Acknowledging this fact, the US National Institute of Standards and Technology (NIST) standardized GCM and its companion algorithm, Galois Message Authentication Code (GMAC), in 2007. The latter is an authentication-only variant of GCM which can be used as an incremental message authentication code (MAC). AES-GCM (the Advanced Encryption Algorithm operating in Galois/Counter Mode) has also been included in NSA Suite B Cryptography.

GCM’s confidentiality service is based on a variation of the Counter mode (CTR) while its authenticity assurance relies on a universal hash function defined over the binary Galois field $GF(2^{128})/x^{128}+x^7+x^2+x+1$.

GCM is defined for block ciphers with block sizes of 128, 192, and 256 bits (AES uses 128-bit blocks). Both GCM and GMAC can accept initialization vectors (IVs) of arbitrary length (AES and other symmetric ciphers, on the other hand, require IVs to be of the same size as the cipher’s block size).

Its interesting to note that Intel high-end CPUs support a special instruction, PCLMULQDQ, that computes the 128-bit product (the carry-less multiplication) of two 64-bit operands. This instruction can be used as a building block to perform the carry-less multiplication of two 128-bit operands required by GCM. The other step in GCM is reduction modulo the irreducible polynomial $x^{128}+x^7+x^2+x+1$, an operation that takes advantage of the PSRLD, PSLLD and PSHUFD instructions. Together with Intel’s Advanced Encryption Standard Instructions (AES-NI), these instructions allow GCM to offer authenticated encryption services at very high rates without using hardware-based solutions (e.g. FPGAs or ASICs). According to Intel, “an AES-GCM implementation based on the AES-NI and PCLMULQDQ instructions delivered a 400% throughput performance gain when compared to a non-AES-NI enabled software solution on the same platform.”

The Python code below implements AES-GCM using the AES implementation already presented and supports the three key sizes used by AES (128, 192 and 256 bits). All eighteen test cases proposed by McGrew & Viega were used to validate this implementation. Please note that this code is not of production quality.

#!/usr/bin/python3
#
# Author: Joao H de A Franco (jhafranco@acm.org)
#
# Description: AES-GCM (Galois Counter/Mode) implementation
#              in Python 3
#
# Date: 2013-05-30
#
#          (CC BY-NC-SA 3.0)
#================================================================

import pyAES
from functools import reduce

def xor(x,y):
"""Returns the exclusive or (xor) between two vectors"""
return bytes(i^j for i,j in zip(x,y))

def intToList(number,listSize):
"""Convert a number into a byte list"""
return [(number >> i) & 0xff
for i in reversed(range(0,listSize*8,8))]

def listToInt(list):
"""Convert a byte list into a number"""
return reduce(lambda x,y:(x<<8)+y,list)

"""GCM's GHASH function"""
def xorMultH (p,q):
"""Multiply (p^q) by hash key"""
def multGF2(x,y):
"""Multiply two polynomials in GF(2^m)/g(w)
g(w) = w^128 + w^7 + w^2 + w + 1
(operands and result bits reflected)"""
(x,y) = map(lambda z:listToInt(list(z)),(x,y))
z = 0
while y & ((1<<128)-1):
if y & (1<<127):
z ^= x
y <<= 1
if x & 1:
x = (x>>1)^(0xe1<<120)
else:
x >>= 1
return bytes(intToList(z,16))

return bytes(multGF2(hkey,xor(p,q)))

def gLen(s):
"""Evaluate length of input in bits and returns
it in the LSB bytes of a 64-bit string"""
return bytes(intToList(len(s)*8,8))

x = bytes(16)
ctextP = ctext + bytes((16-len(ctext)%16)%16)
for i in range(0,len(ctextP),16):
x = xorMultH(x,ctextP[i:i+16])

"""GCM's Authenticated Encryption/Decryption Operations"""
def incr(m):
"""Increment the LSB 32 bits of input counter"""
n = list(m)
n12 = bytes(n[:12])
ctr = listToInt(n[12:])
if ctr == (1<<32)-1:
return n12 + bytes(4)
else:
return n12 + bytes(intToList(ctr+1,4))

obj = pyAES.AES('MODE_ECB')
obj.setKey(keysize,key)
h = bytes(obj.encrypt(bytes(16)))
output = bytes()
L = len(input)
if len(iv) == 12:
y0 = bytes(iv) + bytes(b'\x00\x00\x00\x01')
else:
y0 = bytes(GHASH(h,bytes(),iv))
y = y0
for i in range(0,len(input),16):
y = incr(y)
ctextBlock = xor(bytes(obj.encrypt(y)),
input[i:min(i+16,L)])
output += bytes(ctextBlock)
g = obj.encrypt(y0)
return output,tag,g,h

"""GCM's Authenticated Encryption Operation"""

"""GCM's Authenticated Decryption Operation"""
return True,ptext
else:
return False,None

######################## Testing section ########################

if __name__ == '__main__':

def printHex(s):
"""Prints a bytes string in hex format"""
print('{0:#0x}'.format(bytesToInt(s)))

def bytesToInt(b):
"""Converts a bytes string into an integer"""
return listToInt(list(b))

def listToInt(list):
"""Convert a byte list into a number"""
return reduce(lambda x,y:(x<<8)+y,list)

def intToBytes(n):
"""Converts an integer into a bytes string"""
lst = []
while n:
lst.append(n&0xff)
n >>= 8
return bytes(reversed(lst))

def convertType(v):
"""Convert input variable type to bytes"""
if type(v) is int:
return intToBytes(v)
elif type(v) is bytes:
return v
else:
return bytes(v,'ISO-8859-1')

def printOutputs():
"""Prints expected/evaluated tags and
expected/evaluated ciphertexts"""
print("Tag expected:  ", end="")
printHex(tag)
print("Tag evaluated: ", end="")
printHex(TAG)
print("Ciphertext expected:  ", end="")
printHex(ctext)
print("Ciphertext evaluated: ", end="")
printHex(CTEXT)

try:
assert SUCCESS & (CTEXT == ctext) & (TAG == tag)
print("Test case {0:0d} succeeded".format(id))
except AssertionError:
print("Test case {0:0d} failed".format(id))
printOutputs()

# Test cases extracted from
# "The Galois/Counter Mode of Operation(GCM)", McGrew & Viega, 2005 (http://goo.gl/DWJPK)

# Some useful constants
emptyString = bytes() # zero length bit string
nullBitString128 = bytes(16) # 128-bit null string
nullBitString96 = bytes(12) # 96-bit null IV

# Test Case #1
testcase1 = {'id':1,'keysize':"SIZE_128",'key':0x0,'ptext':emptyString,
'tag':0x58e2fccefa7e3061367f1d57a4e7455a}

# Test Case #2
testcase2 = {'id':2,'keysize':"SIZE_128",'key':0x0,'ptext':nullBitString128,
'tag':0xab6e47d42cec13bdf53a67b21257bddf}

# Test Case #3
testcase3 = {'id':3,'keysize':"SIZE_128",'key':0xfeffe9928665731c6d6a8f9467308308,
'ptext':0xd9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b391aafd255,
'ctext':0x42831ec2217774244b7221b784d0d49ce3aa212f2c02a4e035c17e2329aca12e21d514b25466931c7d8f6a5aac84aa051ba30b396a0aac973d58e091473f5985,
'tag':0x4d5c2af327cd64a62cf35abd2ba6fab4}

## Test Case #4
testcase4 = {'id':4,'keysize':"SIZE_128",'key':0xfeffe9928665731c6d6a8f9467308308,
'ptext':0xd9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b39,
'ctext':0x42831ec2217774244b7221b784d0d49ce3aa212f2c02a4e035c17e2329aca12e21d514b25466931c7d8f6a5aac84aa051ba30b396a0aac973d58e091,
'tag':0x5bc94fbc3221a5db94fae95ae7121a47}

## Test Case #5
testcase5 = {'id':5,'keysize':"SIZE_128",'key':0xfeffe9928665731c6d6a8f9467308308,
'ptext':0xd9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b39,
'ctext':0x61353b4c2806934a777ff51fa22a4755699b2a714fcdc6f83766e5f97b6c742373806900e49f24b22b097544d4896b424989b5e1ebac0f07c23f4598,
'tag':0x3612d2e79e3b0785561be14aaca2fccb}

## Test Case #6
testcase6 = {'id':6,'keysize':"SIZE_128",'key':0xfeffe9928665731c6d6a8f9467308308,
'ptext':0xd9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b39,
'iv':0x09313225df88406e555909c5aff5269aa6a7a9538534f7da1e4c303d2a318a728c3c0c95156809539fcf0e2429a6b525416aedbf5a0de6a57a637b39b,
'ctext':0x8ce24998625615b603a033aca13fb894be9112a5c3a211a8ba262a3cca7e2ca701e4a9a4fba43c90ccdcb281d48c7c6fd62875d2aca417034c34aee5,
'tag':0x619cc5aefffe0bfa462af43c1699d050}

## Test Case #7
testcase7 = {'id':7,'keysize':"SIZE_192",'key':0x0,'ptext':emptyString,
'tag':0xcd33b28ac773f74ba00ed1f312572435}

## Test Case #8
testcase8 = {'id':8,'keysize':"SIZE_192",'key':0x0,'ptext':nullBitString128,
'ctext':0x98e7247c07f0fe411c267e4384b0f600,
'tag':0x2ff58d80033927ab8ef4d4587514f0fb}

## Test Case #9
testcase9 = {'id':9,'keysize':"SIZE_192",'key':0xfeffe9928665731c6d6a8f9467308308feffe9928665731c,
'ptext':0xd9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b391aafd255,
'tag':0x9924a7c8587336bfb118024db8674a14}

## Test Case #10
testcase10 = {'id':10,'keysize':"SIZE_192",'key':0xfeffe9928665731c6d6a8f9467308308feffe9928665731c,
'ptext':0xd9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b39,
'ctext':0x3980ca0b3c00e841eb06fac4872a2757859e1ceaa6efd984628593b40ca1e19c7d773d00c144c525ac619d18c84a3f4718e2448b2fe324d9ccda2710,
'tag':0x2519498e80f1478f37ba55bd6d27618c}

## Test Case #11
testcase11 = {'id':11,'keysize':"SIZE_192",'key':0xfeffe9928665731c6d6a8f9467308308feffe9928665731c,
'ptext':0xd9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b39,
'tag':0x65dcc57fcf623a24094fcca40d3533f8}

## Test Case #12
testcase12 = {'id':12,'keysize':"SIZE_192",'key':0xfeffe9928665731c6d6a8f9467308308feffe9928665731c,
'ptext':0xd9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b39,
'iv':0x9313225df88406e555909c5aff5269aa6a7a9538534f7da1e4c303d2a318a728c3c0c95156809539fcf0e2429a6b525416aedbf5a0de6a57a637b39b,
'ctext':0xd27e88681ce3243c4830165a8fdcf9ff1de9a1d8e6b447ef6ef7b79828666e4581e79012af34ddd9e2f037589b292db3e67c036745fa22e7e9b7373b,
'tag':0xdcf566ff291c25bbb8568fc3d376a6d9}

## Test Case #13
testcase13 = {'id':13,'keysize':"SIZE_256",'key':0x0,'ptext':emptyString,
'tag':0x530f8afbc74536b9a963b4f1c4cb738b}

## Test Case #14
testcase14 = {'id':14,'keysize':"SIZE_256",'key':0x0,'ptext':nullBitString128,
'tag':0xd0d1c8a799996bf0265b98b5d48ab919}

## Test Case #15
testcase15 = {'id':15,'keysize':"SIZE_256",'key':0xfeffe9928665731c6d6a8f9467308308feffe9928665731c6d6a8f9467308308,
'ptext':0xd9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b391aafd255,
'tag':0xb094dac5d93471bdec1a502270e3cc6c}

## Test Case #16
testcase16 = {'id':16,'keysize':"SIZE_256",'key':0xfeffe9928665731c6d6a8f9467308308feffe9928665731c6d6a8f9467308308,
'ptext':0xd9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b39,
'ctext':0x522dc1f099567d07f47f37a32a84427d643a8cdcbfe5c0c97598a2bd2555d1aa8cb08e48590dbb3da7b08b1056828838c5f61e6393ba7a0abcc9f662,
'tag':0x76fc6ece0f4e1768cddf8853bb2d551b}

## Test Case #17
testcase17 = {'id':17,'keysize':"SIZE_256",'key':0xfeffe9928665731c6d6a8f9467308308feffe9928665731c6d6a8f9467308308,
'ptext':0xd9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b39,
'ctext':0xc3762df1ca787d32ae47c13bf19844cbaf1ae14d0b976afac52ff7d79bba9de0feb582d33934a4f0954cc2363bc73f7862ac430e64abe499f47c9b1f,
'tag':0x3a337dbf46a792c45e454913fe2ea8f2}

## Test Case #18
testcase18 = {'id':18,'keysize':"SIZE_256",'key':0xfeffe9928665731c6d6a8f9467308308feffe9928665731c6d6a8f9467308308,
'ptext':0xd9313225f88406e5a55909c5aff5269a86a7a9531534f7da2e4c303d8a318a721c3c0c95956809532fcf0e2449a6b525b16aedf5aa0de657ba637b39,